Decadal survival of tropical pioneer seeds in the soil seed bank is accompanied by fungal infection and dormancy release

Author:

Zalamea Paul‐Camilo12ORCID,Sarmiento Carolina12ORCID,Arnold A. Elizabeth34ORCID,Kuo Venus5,Delevich Carolyn2ORCID,Davis Adam S.6ORCID,Brown Thomas A.7ORCID,Dalling James W.25ORCID

Affiliation:

1. Department of Integrative Biology University of South Florida Tampa Florida USA

2. Smithsonian Tropical Research Institute Panama City Republic of Panama

3. School of Plant Sciences The University of Arizona Tucson Arizona USA

4. Department of Ecology and Evolutionary Biology The University of Arizona Tucson Arizona USA

5. Department of Plant Biology University of Illinois Urbana Illinois USA

6. Department of Crop Sciences University of Illinois Urbana Illinois USA

7. Lawrence Livermore National Laboratory Center for Accelerator Mass Spectrometry Livermore California USA

Abstract

Abstract Pioneer trees require high‐light environments for successful seedling establishment. Consequently, seeds of these species often persist in the soil seed bank (SSB) for periods ranging from several weeks to decades. How they survive despite extensive pressure from seed predators and soil‐borne pathogens remains an intriguing question. This study aims to test the hypotheses that decades‐old seeds collected from the SSB in a lowland tropical forest remain viable by (i) escaping infection by fungi, which are major drivers of seed mortality in tropical soils, and/or (ii) maintaining high levels of seed dormancy and seed coat integrity when compared to inviable seeds. We collected seeds of Trema micrantha and Zanthoxylum ekmanii at Barro Colorado Island, Panama, from sites where adult trees previously occurred in the past 30 years. We used carbon dating to measure seed age and characterized seed coat integrity, seed dormancy and fungal communities. Viable seeds from the SSB ranged in age from 9 to 30 years for T. micrantha, and 5 to 33 years for Z. ekmanii. We found no evidence that decades‐old seeds maintain high levels of seed dormancy or seed coat integrity. Fungi were rarely detected in fresh seeds (no soil contact), but phylogenetically diverse fungi were detected often in seeds from the SSB. Although fungal infections were more commonly detected in inviable seeds than in viable seeds, a lack of differences in fungal diversity and community composition between viable and inviable seeds suggested that viable seeds are not simply excluding fungal species to survive long periods in the SSB. Synthesis. Our findings reveal the importance of a previously understudied aspect of seed survival, where the impact of seed–microbial interactions may be critical to understand long‐term persistence in the SSB. Read the free Plain Language Summary for this article on the Journal blog.

Funder

Division of Environmental Biology

Simons Foundation

Publisher

Wiley

Subject

Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3