Affiliation:
1. Department of Biology Aarhus University Aarhus C Denmark
2. Department of Chemistry and Bioscience Aalborg University Aalborg East Denmark
Abstract
Abstract
The Arctic is impacted by some of the fastest temperature changes observed on Earth, but the impact on the terrestrial arthropod fauna is unclear. Acute physiological thermal limits of terrestrial ectotherms from high latitudes often exceed the local air temperatures, suggesting that they may be able to cope with increasing temperatures. However, knowledge on how Arctic terrestrial arthropods cope with elevated temperatures for longer periods is lacking.
Here we investigate how acclimation temperature and exposure time affect the acute physiological heat tolerance of five terrestrial arthropod species (Neomolgus littoralis, Megaphorura arctica, Nysius groenlandicus, Psammotettix lividellus and Nabis flavomarginatus) immediately after collection in Arctic and sub‐Arctic habitats.
We show that although acute heat tolerances are relatively high, even exposure to moderate (temperature span assessed ca. 3–29°C) acclimation temperatures for a 24 h period have strong negative effects on heat tolerance for four of the five species. Similarly, exposure time negatively affected heat tolerance, but depending on species and temperature.
Together our results suggest that exposure to even moderately elevated temperatures for periods of 24 h or even shorter can lead to lower acute heat tolerance for cold adapted terrestrial arthropod species from sub‐Arctic and Arctic regions. Consequently, climate change leading to extended periods of mildly elevated temperatures may have strong negative effects on these species. We argue that this aspect is currently overlooked when assessing the ability of arthropods from Arctic and sub‐Artic regions to cope with climate changes as such predictions are typically based on acute heat tolerance estimates and with the assumption of beneficial acclimation responses.
Read the free Plain Language Summary for this article on the Journal blog.
Funder
Natur og Univers, Det Frie Forskningsråd
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献