Acclimation to moderate temperatures can have strong negative impacts on heat tolerance of arctic arthropods

Author:

Sørensen Jesper Givskov1ORCID,Noer Natasja Krog2ORCID,Kristensen Torsten Nygaard2ORCID,Bahrndorff Simon2ORCID

Affiliation:

1. Department of Biology Aarhus University Aarhus C Denmark

2. Department of Chemistry and Bioscience Aalborg University Aalborg East Denmark

Abstract

Abstract The Arctic is impacted by some of the fastest temperature changes observed on Earth, but the impact on the terrestrial arthropod fauna is unclear. Acute physiological thermal limits of terrestrial ectotherms from high latitudes often exceed the local air temperatures, suggesting that they may be able to cope with increasing temperatures. However, knowledge on how Arctic terrestrial arthropods cope with elevated temperatures for longer periods is lacking. Here we investigate how acclimation temperature and exposure time affect the acute physiological heat tolerance of five terrestrial arthropod species (Neomolgus littoralis, Megaphorura arctica, Nysius groenlandicus, Psammotettix lividellus and Nabis flavomarginatus) immediately after collection in Arctic and sub‐Arctic habitats. We show that although acute heat tolerances are relatively high, even exposure to moderate (temperature span assessed ca. 3–29°C) acclimation temperatures for a 24 h period have strong negative effects on heat tolerance for four of the five species. Similarly, exposure time negatively affected heat tolerance, but depending on species and temperature. Together our results suggest that exposure to even moderately elevated temperatures for periods of 24 h or even shorter can lead to lower acute heat tolerance for cold adapted terrestrial arthropod species from sub‐Arctic and Arctic regions. Consequently, climate change leading to extended periods of mildly elevated temperatures may have strong negative effects on these species. We argue that this aspect is currently overlooked when assessing the ability of arthropods from Arctic and sub‐Artic regions to cope with climate changes as such predictions are typically based on acute heat tolerance estimates and with the assumption of beneficial acclimation responses. Read the free Plain Language Summary for this article on the Journal blog.

Funder

Natur og Univers, Det Frie Forskningsråd

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3