CR1 (CD35) and CR3 (CD11b/CD18) mediate infection of human monocytes and monocytic cell lines with complement-opsonized HIV independently of CD4

Author:

THIEBLEMONT N1,HAEFFNER-CAVAILLON N1,LEDUR A1,L'AGE-STEHR J2,ZIEGLER-HEITBROCK H W L3,KAZATCHKINE M D1

Affiliation:

1. INSERM U 28, Hôpital Broussais, Paris, France

2. Robert Koch Institüt des Bundesgesundheitsamtes, Berlin

3. Institut für Inununologie, University of Münich, Münich, Germany

Abstract

SUMMARY Peripheral blood and tissue mononuclcar phagocytes serve as major viral reservoirs in HIV-infected individuals. We investigated the role of complement receptors CR1 (CD35) and CR3 (CD11b/CD18) in mediating productive infection with complement-opsonized HIV-1 and HIV-2 of cultured normal human peripheral blood monocytes. the promonocytie cell line THP-l, the monocytic cell line Mono Mac 6 and the glial cell line U251-MG. Cells were infected with the HTLV-IIIB strain of HIV-1 or the LAV-2 strain of HIV-2 that had been preopsonized with fresh human normal HIV seronegative serum. Productive infection was assessed by syncytia formation, the MTT cytotoxicity assay and/or release of p24 antigen in culture supernatants. Using suboptimal amounts of virus to infect the cells, we observed a higher and earlier productive infection of the cells with complement-opsonized HIV than with unopsonized virus. The enhancing effect of complement was totally suppressed by blocking CR1 or CR3 function with F(ab)′2 fragments of anti-receptor MoAbs; while blocking of the LFA-1 antigen had no effect. The infection of monocytic cells with eomplement-opsonized virus occurred independently of CD4 since it was not inhibited by F(ab)′2 fragments of a MoAb against the gp 120 binding site of CD4 and since infection also occurred with Mono Mac 6 and U251-MG cells, which lack expression of the CD4 antigen and of CD4 mRNA. These observations suggest that complement may mediate productive infection of cells of the monocytic lineage with ‘lymphocylotropic’ HIV strains independently of CD4.

Publisher

Oxford University Press (OUP)

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3