Fault growth and orthogonal shortening in transtensional supradetachment basins: Insights from the ‘Old Red’ of western Norway

Author:

Osmundsen P. T.12,Svendby A. K.3,Braathen A.4ORCID,Bakke B.5,Andersen T. B.46

Affiliation:

1. Department of Geoscience and Petroleum Norwegian University of Science and Technology (NTNU) Trondheim Norway

2. Department of Artic Geology University Centre in Svalbard (UNIS) Longyearbyen Norway

3. Geological Survey of Norway Trondheim Norway

4. Department of Geosciences University of Oslo Oslo Norway

5. Lundin Energy Norway Oslo Norway

6. Centre of Earth History and Evolution (CEED) University of Oslo Oslo Norway

Abstract

AbstractFor basins that evolve adjacent to large‐magnitude normal faults, tectonic controls on sedimentation involve isostatic back rotation of an exhuming footwall and, commonly, the evolution of kilometre‐scale extension‐parallel folds. Based on observations from classic localities in western Norway, we propose a three‐stage evolution scenario for transtensional supradetachment basins where the basins become progressively re‐arranged because of core complex exhumation and subsequent orthogonal shortening. Extension‐parallel transverse synclines initially form due to a normal displacement gradient, but when displacements accumulate beyond a certain magnitude, the hanging wall increasingly responds to core complex exhumation and the original depocentre, formed close to the original area of maximum displacement, will become inverted and dismembered above the core complex. Two new synclinal depocentres will develop along the flanks. Because these synclines form by extensional fault growth rather than by shortening, they will be associated with widening of the basin and onlap onto basement at high angles to the maximum elongation trend with overall grain‐size decrease and retrogradational stacking patterns. Further, because these synclines grow away from the evolving core complex, sedimentary units will become asymmetrically distributed inside each syncline in such a way that the oldest deposits in the syncline will be preserved on the flank most proximal to the core complex. In transtensional environments, a third evolutionary stage may involve constrictional strain where extension‐parallel folds and reverse faults produced by orthogonal shortening enhance or interact with other structures. Ultimately, initial extensional sub‐basins may become warped across extension‐parallel folds. Hanging wall deformation will be manifested in shifting accommodation patterns, with depocentres that generally migrate in the direction of the detachment fault. Accommodation patterns initially related to megafault growth may conceptually evolve into depocentres controlled by orthogonal shortening.

Publisher

Wiley

Subject

Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3