Dual species dry surface biofilms; Bacillus species impact on Staphylococcus aureus survival and surface disinfection

Author:

Centeleghe Isabella1ORCID,Norville Phillip2,Hughes Louise1ORCID,Maillard Jean-Yves1ORCID

Affiliation:

1. School of Pharmacy and Pharmaceutical Sciences Cardiff University Cardiff UK

2. GAMA Healthcare Ltd. Hertfordshire UK

Abstract

Abstract Aims Dry surface biofilms (DSB) survive on environmental surfaces throughout hospitals, able to resist cleaning and disinfection interventions. This study aimed to produce a dual species DSB and explore the ability of commercially available wipe products to eliminate pathogens within a dual species DSB and prevent their transfer. Methods and Results Staphylococcus aureus was grown with two different species of Bacillus on stainless steel discs, over 12 days using sequential hydration and dehydration phases. A modified version of ASTM 2967–15 was used to test six wipe products including one water control with the Fitaflex Wiperator. Staphylococcus aureus growth was inhibited when combined with Bacillus subtilis. Recovery of S. aureus on agar from a dual DSB was not always consistent. Our results did not provide evidence that Bacillus licheniformis protected S. aureus from wipe action. There was no significant difference of S. aureus elimination by antimicrobial wipes between single and dual species DSB. B. licheniformis was easily transferred by the wipe itself and to new surfaces both in a single and dual species DSB, whilst several wipe products inhibited the transfer of S. aureus from wipe. However, S. aureus direct transfer to new surfaces was not inhibited post-wiping. Conclusions Although we observed that the dual DSB did not confer protection of S. aureus, we demonstrated that environmental species can persist on surfaces after disinfection treatment. Industries should test DSB against future products and hospitals should consider carefully the products they choose. Significance and Impact of the Study To our knowledge, this is the first study reporting on the production of a dual species DSB. Multispecies DSB have been identified throughout the world on hospital surfaces, but many studies focus on single species biofilms. This study has shown that DSB behave differently to hydrated biofilms.

Funder

GAMA Healthcare

Cardiff University

Publisher

Oxford University Press (OUP)

Subject

Applied Microbiology and Biotechnology,General Medicine,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3