Ionic strength–mediated protein and flavor studies on thermally processed hairtail pieces

Author:

Liu Shuyu12,Cai Xinya3,Tang Zhixin3,Hu Zhiheng42,Li Yuan32ORCID,Hu Yaqin4

Affiliation:

1. Graduate School of Agriculture Kyoto University Kyoto Japan

2. College of Biosystems Engineering and Food Science Zhejiang University Hangzhou China

3. College of Food Science and Engineering Ocean University of China Qingdao China

4. College of Food Science and Engineering, Yazhou Bay Innovation Institute Hainan Tropical Ocean University, Marine Food Engineering Technology Research Center of Hainan Province, Collaborative Innovation Center of Marine Food Deep Processing Sanya China

Abstract

AbstractThis study aimed to investigate the impact of different ionic strengths on the texture, protein, and flavor of thermally processed hairtail pieces. Incorporating salt ions into the heat treatment process had a positive impact on the quality of the cooked hairtail pieces. The pieces treated with 2 M NaCl showed superior texture and sensory scores. The ionic strength had a significant positive correlation with the chewiness and cohesion of cooked hairtail (p < 0.01). Furthermore, the myofibrillar protein content and total sulfhydryl content increased significantly. Circular dichroism spectra analysis revealed a transition in the protein structure from a β‐sheet structure to an α‐helical structure as the ionic strength decreased. The ionic strength had a significant impact on the interaction between protein and flavor compounds. Specifically, it impacted the expression of certain volatile components (p < 0.05). Our study suggests that selecting the appropriate cooking method is crucial for both healthiness and sensory quality of processed hairtail products, and ionic strength mediation is superior in both aspects.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Food Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3