Porous hydrogel composite with whey protein isolate and galactomannans of Leucaena leucocephala (subabul) seeds: Stability, rheological, thermal, and morphological characterization

Author:

Ray Aratrika1,Sharma Abhinav1,Singhal Rekha S.1ORCID

Affiliation:

1. Food Engineering and Technology Department Institute of Chemical Technology Mumbai India

Abstract

AbstractThe present study was aimed at curating a porous KCl crosslinked hydrogel with purified subabul galactomannans (SG) from the defatted seeds of Leucaena leucocephala (subabul) and κ‐carrageenan (κC) by inducing whey protein isolate (WPI). WPI showed 345% foam overrun and minimal foam drainage (%) at 70°C when whipped for 5 min at pH 6.8 in the hydrogel prepared with 6.5% w/v SG + 1% w/v κC + 0.63% w/v KCl + 2% w/v WPI. The SG and WPI incorporated porous hydrogel (SGWP) showed maximum G′ (3010 Pa) and frequency independence (>30 Hz) at 65°C. NMR (1H), scanning electron microscopy, and thermal characterization of SGWP showed a crosslinked microporous gel network formation. SGWP had high water uptake rate (Q) (432%) at 45°C. The stability of SGWP at neutral pH and high temperature (65°C) added an impetus to this study as it could be used for a wide range of applications. Hence the protein–polysaccharide complexation improvised the functional properties of the porous hydrogels. The results suggested a possible valorization of galactomannans from subabul, a forest resource, into a porous hydrogel suitable as a matrix for delivery of bioactive(s) or an aerogel for multifarious industrial applications.Practical ApplicationA porous hydrogel is defined as a solid, or collection of solid bodies, with sufficient open space to enable a fluid to pass through or around them. Leucaena leucocephala seed (forest resource) galactomannans are non‐starch polysaccharides having weak gelling capacity. Whey protein isolates (WPI) are a dairy industry byproduct having excellent foaming properties. Incorporation of WPI in the hydrogel prepared with subabul galactomannan and κ‐carrageenan using KCl as a crosslin could form a stable porous structure having high water uptake rate (Q) at neutral pH and elevated temperature. The hydrogel so developed could be a step toward circular economy.

Publisher

Wiley

Subject

Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3