Combining transfer learning and hyperspectral imaging to identify bruises of pears across different bruise types

Author:

Liu Dayang1ORCID,Zhang Huiting1,Lv Feng1,Tao Yanrong2,Zhu Liangkuan1

Affiliation:

1. College of Computer and Control Engineering,Northeast Forestry University Harbin Heilongjiang China

2. State Grid Siping Power Supply Company Siping China

Abstract

AbstractMechanical bruise is one of the most crucial factors affecting the quality of pears, which has a huge influence on postharvest transportation, storage, and sale of pears. To rapidly detect early bruises of pears across different bruise types, hyperspectral imaging technology coupled with transfer learning methods was performed in this study.Two transfer learning methods, that is, transfer component analysis (TCA) and manifold embedded distribution alignment (MEDA), were applied for two tasks (impact bruise → crush bruise, crush bruise → impact bruise). Supporting vector machine (SVM) was set as a baseline to conduct analysis and comparison of the transferability of the models. The result showed that, for task 1 (impact bruise → crush bruise), MEDA and TCA‐SVM model achieved a classification accuracy of 93.33% and 91.11% in target domain, individually. For task 2 (crush bruise →impact bruise), MEDA and TCA‐SVM model achieved an accuracy of 88.89% and 85.19% in target domain, respectively. Both the two models improved the accuracy compared with SVM models (84.44% for task 1; 77.04% for task 2).Overall, the results indicated that transfer learning approaches could perform pear bruise detection across different bruise types. Hyperspectral imaging in combination with transfer learning methods is a promising possibility for the efficient and cost‐saving field detection of fruit bruises among different bruise types.Practical ApplicationThe production and export of pears are faced with problems of mechanical damage due to vibration, collision, impact, and other factors, which cause chemical changes in color, odor, and taste. Sometimes the bruise was too slight to be ignored which would infect with other fruits in the future. In this study, we used hyperspectral imaging combined with transfer learning method could detect these slight bruises caused by different factors. Distinguishing different types of damage can provide a reference for quick judgment of the process causing damage and take prompt measures to reduce economic losses.

Funder

Fundamental Research Funds for the Central Universities

China Postdoctoral Science Foundation

National Natural Science Foundation of China

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3