Unveiling ceramide dynamics: Shedding light on healthy aging in growth hormone‐releasing hormone knockout mice

Author:

Lasher Alexander Tate1ORCID,Wang Liping2,Hyun Jooyoung1,Summers Scott A.2ORCID,Sun Liou Y.1ORCID

Affiliation:

1. Department of Biology University of Alabama at Birmingham Birmingham Alabama USA

2. Department of Nutrition and Integrative Physiology University of Utah Salt Lake City Utah USA

Abstract

AbstractDysregulation of growth hormone (GH) signaling consistently leads to increased lifespan in laboratory rodents, yet the precise mechanisms driving this extension remain unclear. Understanding the molecular underpinnings of the beneficial effects associated with GH deficiency could unveil novel therapeutic targets for promoting healthy aging and longevity. In our pursuit of identifying metabolites implicated in aging, we conducted an unbiased lipidomic analysis of serum samples from growth hormone‐releasing hormone knockout (GHRH‐KO) female mice and their littermate controls. Employing a targeted lipidomic approach, we specifically investigated ceramide levels in GHRH‐KO mice, a well‐established model of enhanced longevity. While younger GHRH‐KO mice did not exhibit notable differences in serum lipids, older counterparts demonstrated significant reductions in over one‐third of the evaluated lipids. In employing the same analysis in liver tissue, GHRH‐KO mice showed pronounced downregulation of numerous ceramides and hexosylceramides, which have been shown to elicit many of the tissue defects that accompany aging (e.g., insulin resistance, oxidative stress, and cell death). Additionally, gene expression analysis in the liver tissue of adult GHRH‐KO mice identified substantial decreases in several ceramide synthesis genes, indicating that these alterations are, at least in part, attributed to GHRH‐KO‐induced transcriptional changes. These findings provide the first evidence of disrupted ceramide metabolism in a long‐lived mammal. This study sheds light on the intricate connections between GH deficiency, ceramide levels, and the molecular mechanisms influencing lifespan extension.

Funder

National Institutes of Health

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3