Rapid discrimination of four Salmonella enterica serovars: A performance comparison between benchtop and handheld Raman spectrometers

Author:

Yuan Quan1,Gu Bin1,Liu Wei1,Wen Xin‐Ru1,Wang Ji‐Liang2,Tang Jia‐Wei3,Usman Muhammad1,Liu Su‐Ling3,Tang Yu‐Rong2,Wang Liang13456ORCID

Affiliation:

1. School of Medical Informatics and Engineering Xuzhou Medical University Xuzhou China

2. Department of Laboratory Medicine Shengli Oilfield Central Hospital Dongying China

3. Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences) Southern Medical University Guangzhou China

4. Division of Microbiology and Immunology, School of Biomedical Sciences The University of Western Australia Crawley Western Australia Australia

5. School of Agriculture and Food Sustainability University of Queensland Brisbane Queensland Australia

6. Centre for Precision Health, School of Medical and Health Sciences Edith Cowan University Perth Western Australia Australia

Abstract

AbstractFoodborne illnesses, particularly those caused by Salmonella enterica with its extensive array of over 2600 serovars, present a significant public health challenge. Therefore, prompt and precise identification of S. enterica serovars is essential for clinical relevance, which facilitates the understanding of S. enterica transmission routes and the determination of outbreak sources. Classical serotyping methods via molecular subtyping and genomic markers currently suffer from various limitations, such as labour intensiveness, time consumption, etc. Therefore, there is a pressing need to develop new diagnostic techniques. Surface‐enhanced Raman spectroscopy (SERS) is a non‐invasive diagnostic technique that can generate Raman spectra, based on which rapid and accurate discrimination of bacterial pathogens could be achieved. To generate SERS spectra, a Raman spectrometer is needed to detect and collect signals, which are divided into two types: the expensive benchtop spectrometer and the inexpensive handheld spectrometer. In this study, we compared the performance of two Raman spectrometers to discriminate four closely associated S. enterica serovars, that is, S. enterica subsp. enterica serovar dublin, enteritidis, typhi and typhimurium. Six machine learning algorithms were applied to analyse these SERS spectra. The support vector machine (SVM) model showed the highest accuracy for both handheld (99.97%) and benchtop (99.38%) Raman spectrometers. This study demonstrated that handheld Raman spectrometers achieved similar prediction accuracy as benchtop spectrometers when combined with machine learning models, providing an effective solution for rapid, accurate and cost‐effective identification of closely associated S. enterica serovars.

Funder

Basic and Applied Basic Research Foundation of Guangdong Province

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3