No optimal spatial filtering distance for mitigating sampling bias in ecological niche models

Author:

Lamboley Quentin1ORCID,Fourcade Yoan1ORCID

Affiliation:

1. Univ Paris‐Est Creteil, Sorbonne Université, Université Paris‐Cité, CNRS, IRD, INRAE, Institut d'Écologie et des Sciences de l'Environnement, IEES Créteil France

Abstract

AbstractAimThe continuous development of statistical tools applied to ecology has contributed to great advances for modelling species' niches and distributions from opportunistic observations. However, as these observations are subject to biases caused by spatial variation in sampling effort, ecological niche models (ENMs) are also frequently biased. Among several bias correction methods that have been proposed, spatial filtering—imposing a minimum distance between occurrences—is widely used, yet lacks clear guidelines for choosing the filtering distance. Here, we aimed to explore the impact of spatial filtering distances on the performance of ENMs.LocationEurope.TaxonVirtual species.MethodsWe applied ENMs to two virtual species with contrasting levels of specialisation, across a spectrum of modelling conditions, bias types and sample sizes.ResultsModels applied to the specialist species had on average a lower performance than those applied to the generalist species. Using a biased sample reduced model performance, especially when the bias was strong, and when the sample size was large. In many cases, spatial filtering failed to improve model performance or even reduced it. We did find an improvement for the generalist species modelled with large and strongly biased datasets. However, there was no optimal filtering distance, as this improvement was linearly and positively associated with filtering distance. Moreover, because the initial bias was strong and the filtered dataset became very small, the resulting models had only very low accuracy.Main ConclusionsOur results suggest that there is no optimal filtering distance for dealing with sampling bias in ENMs, and that spatial filtering never improves model performance enough to draw accurate predictions. We therefore recommend spatial filtering to be employed cautiously, only when enough data are available, and bearing in mind that its effectiveness remains highly uncertain.

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3