Optimising occurrence data in species distribution models: sample size, positional uncertainty, and sampling bias matter

Author:

Moudrý Vítězslav1ORCID,Bazzichetto Manuele1ORCID,Remelgado Ruben23ORCID,Devillers Rodolphe4ORCID,Lenoir Jonathan5ORCID,Mateo Rubén G.6ORCID,Lembrechts Jonas J.7ORCID,Sillero Neftalí8ORCID,Lecours Vincent9ORCID,Cord Anna F.23ORCID,Barták Vojtěch1ORCID,Balej Petr1ORCID,Rocchini Duccio110ORCID,Torresani Michele11ORCID,Arenas‐Castro Salvador12ORCID,Man Matěj13ORCID,Prajzlerová Dominika1ORCID,Gdulová Kateřina1ORCID,Prošek Jiří113ORCID,Marchetto Elisa10ORCID,Zarzo‐Arias Alejandra1415ORCID,Gábor Lukáš1ORCID,Leroy François1ORCID,Martini Matilde10ORCID,Malavasi Marco16ORCID,Cazzolla Gatti Roberto10ORCID,Wild Jan113ORCID,Šímová Petra1ORCID

Affiliation:

1. Department of Spatial Sciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague Praha‐Suchdol Czech Republic

2. Chair of Computational Landscape Ecology, TUD Dresden University of Technology Dresden Germany

3. Agro‐Ecological Modeling Group, Institute of Crop Science and Resource Conservation, University of Bonn Bonn Germany

4. UMR Espace‐Dev, Institut de Recherche Pour le Développement, Univ Réunion La Réunion France

5. UMR CNRS 7058 ‘Ecologie et Dynamique des Systèmes Anthropisés' (EDYSAN), Université de Picardie Jules Verne Amiens France

6. Departamento de Biología and Centro de Investigacion en Biodiversidad y Cambio Global (CIBC‐UAM), Universidad Autonoma de Madrid Madrid Spain

7. Research Group of Plants and Ecosystems (PLECO), Department of Biology, University of Antwerp Antwerp Belgium

8. Centro de Investigação em Ciências Geo‐Espaciais (CICGE), Faculdade de Ciências da Universidade do Porto, Alameda do Monte da Virgem Vila Nova de Gaia Portugal

9. Université du Québec à Chicoutimi Saguenay QC Canada

10. BIOME Lab, Department of Biological, Geological and Environmental Sciences, Alma Mater Studiorum University of Bologna Bologna Italy

11. Free University of Bolzano/Bozen, Faculty of Agricultural, Environmental and Food Sciences Bolzano/Bozen Italy

12. Área de Ecología, Dpto. de Botánica, Ecología y Fisiología Vegetal, Facultad de Ciencias, Universidad de Córdoba, Edificio Celestino Mutis (C‐4) Córdoba Spain

13. Institute of Botany of the Czech Academy of Sciences Průhonice Czech Republic

14. Universidad de Oviedo Oviedo Spain

15. Department of Biogeography and Global Change, Museo Nacional de Ciencias Naturales (MNCN‐CSIC) Madrid Spain

16. Department of Chemistry, Physics, Mathematics and Natural Sciences, University of Sassari Sassari Italy

Abstract

Species distribution models (SDMs) have proven valuable in filling gaps in our knowledge of species occurrences. However, despite their broad applicability, SDMs exhibit critical shortcomings due to limitations in species occurrence data. These limitations include, in particular, issues related to sample size, positional uncertainty, and sampling bias. In addition, it is widely recognised that the quality of SDMs as well as the approaches used to mitigate the impact of the aforementioned data limitations depend on species ecology. While numerous studies have evaluated the effects of these data limitations on SDM performance, a synthesis of their results is lacking. However, without a comprehensive understanding of their individual and combined effects, our ability to predict the influence of these issues on the quality of modelled species–environment associations remains largely uncertain, limiting the value of model outputs. In this paper, we review studies that have evaluated the effects of sample size, positional uncertainty, sampling bias, and species ecology on SDMs outputs. We build upon their findings to provide recommendations for the critical assessment of species data intended for use in SDMs.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3