Computational skills by stealth in introductory data science teaching

Author:

Burr Wesley1ORCID,Chevalier Fanny23,Collins Christopher4ORCID,Gibbs Alison L3ORCID,Ng Raymond5,Wild Chris J6ORCID

Affiliation:

1. Department of Mathematics Trent University Peterborough Ontario Canada

2. Department of Computer Science University of Toronto Toronto Ontario Canada

3. Department of Statistical Sciences University of Toronto Toronto Ontario Canada

4. Faculty of Science Ontario Tech University Oshawa Ontario Canada

5. Department of Computer Science University of British Columbia Vancouver Canada

6. Department of Statistics University of Auckland Auckland New Zealand

Publisher

Wiley

Subject

Education,Statistics and Probability

Reference39 articles.

1. American Statistical Association Undergraduate Guidelines Workgroup(2014) Curriculum Guidelines for Undergraduate Programs in Statistical Science http://www.amstat.org/asa/files/pdfs/EDU‐guidelines2014‐11‐15.pdf.

2. Graphs in Statistical Analysis

3. Census at School NZ. (2020) Investigate time series data https://new.censusatschool.org.nz/resources/3‐8/.

4. A Fresh Look at Introductory Data Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Teaching and Learning of Tertiary Mathematics;Research in Mathematics Education in Australasia 2020–2023;2024

2. Some pedagogical elements of computer programming for data science: A comparison of three approaches to teaching the R language;Teaching Statistics;2023-11-28

3. Coding Code: Qualitative Methods for Investigating Data Science Skills;Journal of Statistics and Data Science Education;2023-11-03

4. Reflections and Considerations on Running Creative Visualization Learning Activities;2022 IEEE 4th Workshop on Visualization Guidelines in Research, Design, and Education (VisGuides);2022-10

5. Civic Statistics and iNZight: Illustrations of Some Design Principles for Educational Software;Statistics for Empowerment and Social Engagement;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3