Molecular docking‐based virtual screening and dynamics simulation study of novel and potential SIRT7 inhibitors

Author:

Guo Xinli1,Chen Rui2,Cao Liping34

Affiliation:

1. Department of Operating Room, Sir Run Run Shaw Hospital, School of Medicine Zhejiang University Hangzhou China

2. State Key Laboratory of Food Science and Technology Jiangnan University Wuxi China

3. Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine Zhejiang University Hangzhou China

4. Zhejiang Engineering Research Center of Cognitive Healthcare, Sir Run Run Shaw Hospital, School of Medicine Zhejiang University Hangzhou China

Abstract

AbstractIn cancer cells, short for sirtuin (SIRT7) stabilizes the transformed state via its nicotinamide adenine dinucleotide (NAD+)‐dependent deacetylase activity. Epigenetic factor SIRT7 plays important roles in cancer biology, reversing cancer phenotypes and suppressing tumor growth when inactive. In the present study, we got the SIRT7 protein structure from Alpha Fold2 Database and performed structure‐based virtual screening to develop specific SIRT7 inhibitors using the SIRT7 inhibitor 97,491 interaction mechanism. As candidates for specific SIRT7 inhibitors, compounds with high affinities to SIRT7 were chosen. ZINC000001910616 and ZINC000014708529, two of our leading compounds, showed strong interactions with SIRT7. Our MD simulation results also revealed that the 5‐hydroxy‐4H‐thioxen‐4‐one group and terminal carboxyl group were critical groups responsible for interaction of small molecules with SIRT7. In our study, we demonstrated that targeting SIRT7 may offer novel therapeutic options for cancer treatment. Compounds ZINC000001910616 and ZINC000014708529 can serve as chemical probes to investigate SIRT7 biological functions and provide starting points for the development of novel therapeutics against cancers.

Publisher

Wiley

Subject

Molecular Medicine,Biochemistry,Drug Discovery,Pharmacology,Organic Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3