A machine learning‐based KNIME workflow to predict VEGFR‐2 inhibitors

Author:

Tripathi Nancy1ORCID,Bhardwaj Nivedita1ORCID,Kumar Sanjay1,Jain Shreyans K.1ORCID

Affiliation:

1. Department of Pharmaceutical Engineering & Technology Indian Institute of Technology (Banaras Hindu University) Varanasi India

Abstract

AbstractVascular endothelial growth factors (VEGFs) are specific cytokines involved in angiogenesis and do so via binding to vascular endothelial growth factor receptors (VEGFRs), a type of receptor tyrosine kinase. VEGFs are reported to facilitate angiogenesis in physiological (embryogenesis) and pathological (tumor) conditions. The overexpression of VEGFs and consequently VEGFRs is reported in tumorigenic conditions. Several VEGFR inhibitors currently used as anticancer drugs to prevent angiogenesis are sunitinib, sorafenib, etc. To identify new potential candidates as VEGFR inhibitors, a classification study using a large and diverse dataset of VEGFR inhibitors from the BindingDB database has been conducted. The KNIME platform was used to calculate molecular and fingerprint‐based descriptors and several classification algorithms viz. linear regression (LR), k‐nearest neighbor (kNN), decision tree (DT), random forest (RF), and gradient boosted tree (GBT) were employed to build the classification model. The model performance was evaluated by accuracy, precision, recall, and F1 score of the test set. The best LR, kNN, DT, RF, and GBT classifiers had the F1 score of 0.81, 0.87, 0.82, 0.87, and 0.87, respectively. The assorted 5120 VEGFR inhibitors were clustered into 10 subsets, and the structural features of each subset were assessed along with the identification of significant fragments in active and inactive compounds. The automated classifier model developed using the KNIME platform could serve as an important platform for screening and designing molecules as VEGFR inhibitors.

Publisher

Wiley

Subject

Molecular Medicine,Biochemistry,Drug Discovery,Pharmacology,Organic Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3