Affiliation:
1. Department of Gynecology Ningbo First Hospital Ningbo Zhejiang China
2. Department of Medical Laboratory Ningbo First Hospital Ningbo Zhejiang China
3. Department of Civic Education Ningbo First Hospital Ningbo Zhejiang China
4. Center of Medical Examination Ningbo First Hospital Ningbo Zhejiang China
5. Department of Gynecologic Ningbo First Hospital Ningbo Zhejiang China
Abstract
AbstractEvodiamine (EVO) has been demonstrated to promote apoptosis of ovarian cancer cells, and upregulate miR‐152‐3p level in colorectal cancer. Here, we explore part of the network mechanism of EVO and miR‐152‐3p in ovarian cancer. The bioinformatics website, dual luciferase reporter assay, and quantitative real‐time polymerase chain reaction were applied to analyze the network among EVO, lncRNA, miR‐152‐3p, and mRNA. The effect and mechanism of EVO on ovarian cancer cells were determined using cell counting kit‐8, flow cytometry, TUNEL, Western blot, and rescue experiments. As a result, EVO dose‐dependently attenuated cell viability, induced G2/M phase arrest and apoptosis, promoted miR‐152‐3p level (4.5‐ or 2‐fold changes), and inhibited expressions of NEAT1 (0.225‐ or 0.367‐fold changes), CDK8 (0.625‐ or 0.571‐fold changes), and CDK19 (0.25‐ or 0.147‐fold changes) in OVCAR‐3 and SKOV‐3 cells. In addition, EVO decreased Bcl‐2 expression, but increased the expressions of Bax and c‐caspase‐3. NEAT1 targeted miR‐152‐3p which bound to CDK19. The impacts of EVO on cell viability, cycle, apoptosis, and apoptosis‐related proteins were partially reversed by miR‐152‐3p inhibitor, NEAT1 overexpression, or CDK19 overexpression. Furthermore, miR‐152‐3p mimic offset the effects of NEAT1 or CDK19 overexpression. The role of NEAT1 overexpression in the biological phenotype of ovarian cancer cells was counteracted by shCDK19. In conclusion, EVO attenuates ovarian cancer cell progression via the NEAT1‐miR‐152‐3p‐CDK19 axis.
Subject
Molecular Medicine,Biochemistry,Drug Discovery,Pharmacology,Organic Chemistry
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献