SAnDReS 2.0: Development of machine‐learning models to explore the scoring function space

Author:

de Azevedo Walter Filgueira1ORCID,Quiroga Rodrigo2,Villarreal Marcos Ariel2,da Silveira Nelson José Freitas3,Bitencourt‐Ferreira Gabriela4,da Silva Amauri Duarte5,Veit‐Acosta Martina6,Oliveira Patricia Rufino7,Tutone Marco8,Biziukova Nadezhda9,Poroikov Vladimir9,Tarasova Olga9,Baud Stéphaine10

Affiliation:

1. Department of Physics Institute of Exact Sciences, Federal University of Alfenas Alfenas Brazil

2. Instituto de Investigaciones en Fisicoquímica de Córdoba (INFIQC), CONICET‐Departamento de Química Teórica y Computacional, Facultad de Ciencias Químicas Universidad Nacional de Córdoba, Ciudad Universitaria Córdoba Argentina

3. Laboratory of Molecular Modeling and Computer Simulation Federal University of Alfenas Alfenas Brazil

4. Pontifical Catholic University of Rio Grande do Sul Porto Alegre Brazil

5. Programa de Pós‐Graduação em Tecnologias da Informação e Gestão em Saúde Universidade Federal de Ciências da Saúde de Porto Alegre Porto Alegre Brazil

6. Western Michigan University Kalamazoo Michigan USA

7. School of Arts, Sciences and Humanities University of São Paulo São Paulo Brazil

8. Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF) Università di Palermo Palermo Italy

9. Institute of Biomedical Chemistry Moscow Russia

10. Laboratoire SiRMa, UMR CNRS/URCA 7369, UFR Sciences Exactes et Naturelles Université de Reims Champagne‐Ardenne, CNRS, MEDYC Reims France

Abstract

AbstractClassical scoring functions may exhibit low accuracy in determining ligand binding affinity for proteins. The availability of both protein–ligand structures and affinity data make it possible to develop machine‐learning models focused on specific protein systems with superior predictive performance. Here, we report a new methodology named SAnDReS that combines AutoDock Vina 1.2 with 54 regression methods available in Scikit‐Learn to calculate binding affinity based on protein–ligand structures. This approach allows exploration of the scoring function space. SAnDReS generates machine‐learning models based on crystal, docked, and AlphaFold‐generated structures. As a proof of concept, we examine the performance of SAnDReS‐generated models in three case studies. For all three cases, our models outperformed classical scoring functions. Also, SAnDReS‐generated models showed predictive performance close to or better than other machine‐learning models such as KDEEP, CSM‐lig, and ΔVinaRF20. SAnDReS 2.0 is available to download at https://github.com/azevedolab/sandres.

Funder

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3