The poorly‐explored stomatal response to temperature at constant evaporative demand

Author:

Mills Colleen1ORCID,Bartlett Megan K.2,Buckley Thomas N.1ORCID

Affiliation:

1. Department of Plant Sciences University of California Davis USA

2. Department of Viticulture and Enology University of California Davis USA

Abstract

AbstractChanges in leaf temperature are known to drive stomatal responses, because the leaf‐to‐air water vapour gradient (Δw) increases with temperature if ambient vapour pressure is held constant, and stomata respond to changes in Δw. However, the direct response of stomata to temperature (DRST; the response when Δw is held constant by adjusting ambient humidity) has been examined far less extensively. Though the meagre available data suggest the response is usually positive, results differ widely and defy broad generalisation. As a result, little is known about the DRST. This review discusses the current state of knowledge about the DRST, including numerous hypothesised biophysical mechanisms, potential implications of the response for plant adaptation, and possible impacts of the DRST on plant‐atmosphere carbon and water exchange in a changing climate.

Funder

National Science Foundation

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3