The stomatal response to vapor pressure deficit drives the apparent temperature response of photosynthesis in tropical forests

Author:

Slot Martijn1ORCID,Rifai Sami W.2ORCID,Eze Chinedu E.13ORCID,Winter Klaus1ORCID

Affiliation:

1. Smithsonian Tropical Research Institute Apartado 0843‐03092, Balboa Ancón Panama

2. School of Biological Sciences The University of Adelaide Adelaide SA 5005 Australia

3. Department of Agronomy Michael Okpara University of Agriculture Umudike Abia State 440109 Nigeria

Abstract

Summary As temperature rises, net carbon uptake in tropical forests decreases, but the underlying mechanisms are not well understood. High temperatures can limit photosynthesis directly, for example by reducing biochemical capacity, or indirectly through rising vapor pressure deficit (VPD) causing stomatal closure. To explore the independent effects of temperature and VPD on photosynthesis we analyzed photosynthesis data from the upper canopies of two tropical forests in Panama with Generalized Additive Models. Stomatal conductance and photosynthesis consistently decreased with increasing VPD, and statistically accounting for VPD increased the optimum temperature of photosynthesis (Topt) of trees from a VPD‐confounded apparent Topt of c. 30–31°C to a VPD‐independent Topt of c. 33–36°C, while for lianas no VPD‐independent Topt was reached within the measured temperature range. Trees and lianas exhibited similar temperature and VPD responses in both forests, despite 1500 mm difference in mean annual rainfall. Over ecologically relevant temperature ranges, photosynthesis in tropical forests is largely limited by indirect effects of warming, through changes in VPD, not by direct warming effects of photosynthetic biochemistry. Failing to account for VPD when determining Topt misattributes the underlying causal mechanism and thereby hinders the advancement of mechanistic understanding of global warming effects on tropical forest carbon dynamics.

Funder

Australian Research Council

Publisher

Wiley

Reference77 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3