Nutrient conditions influence allelopathic capabilities of Ludwigia adscendens and other tropical macrophytes against Microcystis aeruginosa

Author:

Sim Darren Z. H.1ORCID,Mowe Maxine A. D.1ORCID,Mitrovic Simon M.2ORCID,Tulsian Nikhil K.13ORCID,Anand Ganesh S.14ORCID,Yeo Darren C. J.15ORCID

Affiliation:

1. Department of Biological Sciences National University of Singapore Singapore Republic of Singapore

2. Freshwater and Estuarine Research Group, Environmental Sciences Discipline, School of Life Sciences University of Technology Sydney Broadway New South Wales Australia

3. MSD International GmBH Singapore Singapore

4. Department of Chemistry, Huck Institutes of the Life Sciences The Pennsylvania State University University Park Pennsylvania USA

5. Lee Kong Chian Natural History Museum National University of Singapore Singapore Republic of Singapore

Abstract

Abstract Macrophytes may release allelochemicals that suppress competing phytoplankton, although it is unclear how their effectiveness could be influenced by environmental nutrient conditions. To approach this, we conducted a series of bioassays against the bloom‐forming cyanobacterium Microcystis aeruginosa using extracts and exudates from potentially allelopathic macrophytes under varying nutrient conditions. We screened six different tropical macrophytes and identified antialgal effects in both extracts and exudates of Ludwigia adscendens, Persicaria barbata, Pontederia crassipes and Vallisneria spiralis. Growth assays indicated that extract inhibitory effectiveness decreased as nutrient concentration increased from 5% to 50% strength. Focusing on the potent antialgal extract of L. adscendens, we determined that its inhibitory effects were enhanced by specifically reducing the availability of either micronutrient or bicarbonate availability, indicating a role of these nutrients in protecting algal cells from allelochemicals. Bioactivity‐guided fractionation and ultra‐performance liquid chromatography – mass spectrometry analyses of L. adscendens extract indicated that ellagitannins were the major constituent of bioactive extract fractions, suggesting an antialgal mechanism common to other tannic compounds. Novel allelopathic alkaloids and terpenoid compounds also were described, although their mechanisms of action are unknown. Our findings provide evidence that the availability of carbon and micronutrients to cyanobacteria could influence the effects of macrophyte allelochemicals. This interaction between the nutrient environment and allelochemical sensitivity of cyanobacteria can be substantial, and studies or applications involving allelopathic interactions between macrophytes and phytoplankton should consider this.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3