Scaling up the Natural Mode of Action of Macrophyte Allelochemicals and Their Effect on Toxic Cyanobacteria Using a Nitrogen-Limited Chemostat

Author:

Tazart Zakaria12ORCID,Lazrak Khawla13,El Bouaidi Widad1,Redouane El Mahdi14,Tebaa Lamiaa1,Douma Mountasser5ORCID,Mouhri Khadija1,Loudiki Mohammed1ORCID

Affiliation:

1. Water, Biodiversity and Climate Change Laboratory, Phycology, Biotechnology and Environmental Toxicology Research Unit, Faculty of Sciences Semlalia, Cadi Ayyad University, Av. Prince My Abdellah, P.O. Box 2390, Marrakech 40000, Morocco

2. AgroBioSciences, Plant Stress Physiology Laboratory, Mohammed VI Polytechnic University, Benguerir 43150, Morocco

3. iES Landau (Institute for Environmental Sciences), RPTU Kaiserslautern-Landau, 76829 Landau, Germany

4. UMR-I 02 INERIS-URCA-ULH SEBIO, University of Reims Champagne-Ardenne, 15, 51100 Reims, France

5. Environmental Microbiology and Toxicology Research Unit, Polydisciplinary Faculty of Khouribga (FPK), Sultan Moulay Slimane University, Beni Mellal 23000, Morocco

Abstract

This study investigates the inhibitory and hormetic effects of Myriophyllum spicatum extract on Microcystis aeruginosa in a controlled, continuous culture environment. To address the global challenge posed by harmful algal blooms, we used a range of extract concentrations to delineate the growth response patterns. At very low concentrations (6.25 and 12.5 mg/L), the addition of M. spicatum extract shows no discernible reduction in M. aeruginosa cell density or growth rate; instead, a slight increase is observed during exposure, suggesting a hormetic effect. However, at higher concentrations (75 and 100 mg/L), there is a drastic reduction of more than 50% in cell density and growth rate at 75 mg/L, with complete inhibition at 100 mg/L, leading to pronounced oxidative stress, damage to antioxidant defense systems, and increased cell mortality. Increased levels of malondialdehyde, catalase, and superoxide dismutase activities indicate the involvement of these enzymes in combating oxidative stress. Furthermore, intracellular and extracellular microcystins were significantly decreased at higher extract concentrations (50, 75, and 100 mg/L) in a dose-dependent manner. Our results indicate a dose-dependent response and provide insight into the potential application of natural water treatment solutions. Implications for ecological management and future research directions are discussed.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3