Formation kinetics and thermodynamic stability of the Aurivillius compounds in Bi4Ti3O12–BiFeO3 system

Author:

Gong Weiping1ORCID,Zhang Duoduo1,Xiao Lang12,Zhao Jiahui1,Wang Ting1,Li Kai1,Zhao Zhentin1,Scharrer Manuel3,Navrotsky Alexandra3ORCID

Affiliation:

1. Guangdong Provincial Key Laboratory of Electronic Functional Materials and Devices Huizhou University Huizhou Guangdong China

2. School of Materials Science and Engineering Xiangtan University Xiangtan Hunan China

3. School of Molecular Sciences and Navrotsky Eyring Center for Materials of the Universe Arizona State University Tempe Arizona USA

Abstract

AbstractThe Aurivillius compounds in the Bi2O3–Fe2O3–TiO2 system, combining ferroelectric, semiconducting, and ferromagnetic properties, have attracted particular interest. Formation kinetics and thermodynamic stability are the fundamental knowledge needed for modeling and predicting the temporal microstructure and property evolution during materials processing but have not yet been addressed by quantitative experimental measurement. This article focuses on the Bin+1Fen–3Ti3O3n+3 Aurivillius compounds on the Bi4Ti3O12–BiFeO3 tie‐line to elucidate the mechanisms and thermodynamic controls responsible for phase formation of compounds with various perovskite‐like layers. Five high‐purity Aurivillius compounds Bi4Ti3O12, Bi5FeTi3O15, Bi6Fe2Ti3O18, Bi7Fe3Ti3O21, and Bi8Fe4Ti3O24 with integer = 3–7 values were synthesized and their phase transformation properties and enthalpies of formation were studied by X‐ray diffraction in situ, high temperature differential scanning calorimetry, and high temperature oxide melt solution calorimetry. Thermodynamic stability of the compounds decreases with increasing n, and formation kinetics gradually slow down, demonstrating the inherent difficulty to synthesize pure Aurivillius compounds with n larger than 8. This difficulty was confirmed by an impurity phase coexisting with Bi9Fe5Ti3O27.

Funder

U.S. Department of Energy

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3