Affiliation:
1. Faculty of Chemical and Materials Engineering Shahrood University of Technology Shahrood Iran
Abstract
AbstractSemiconductor photocatalysis has been extensively used in the degradation of pollutants and the production of hydrogen fuel. The main drawback in the application of semiconductor photocatalysis is the rapid recombination of charge carriers. Several strategies have been applied to improve charge carrier separation to preserve them for imparting in photocatalytic reactions. Among the modifications that are made in the photocatalytic systems, the construction of different types of heterostructures, including type II, Z‐scheme, p–n junction, and Schottky junction, has received great attention. Recently, emerging S‐scheme heterojunctions have been shown to be able to preserve powerful charge carriers for photocatalytic reactions, which is not the case in other heterostructures. In this review, principles and mechanisms of charge transfer in S‐scheme heterostructures are discussed, and important semiconductors that have been used in the construction of this type of heterojunctions are reviewed. Methods for identification of S‐scheme heterojunction, challenges, and prospects have been addressed.
Funder
Shahrood University of Technology
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献