Efficient and Robust Photodegradation of Dichlorvos Pesticide by BiOBr/WO2.72 Nanocomposites with Type-I Heterojunction under Visible Light Irradiation

Author:

Meng Aoyun1,Li Wen1,Li Zhen12,Zhang Jinfeng3

Affiliation:

1. College of Food Engineering, Anhui Science and Technology University, Chuzhou 233100, China

2. Key Laboratory of Advanced Electrode Materials for Novel Solar Cells for Petroleum and Chemical Industry of China, School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou 215009, China

3. Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Physics and Electronic Information, Huaibei Normal University, Huaibei 235000, China

Abstract

In this study, we developed novel BiOBr/WO2.72 nanocomposites (abbreviated as BO/WO) and systematically investigated their photocatalytic degradation performance against the pesticide dichlorvos under visible light irradiation. The experimental results demonstrated that the BO/WO nanocomposites achieved an 85.4% degradation of dichlorvos within 80 min. In comparison, the BO alone achieved a degradation degree of 66.8%, and the WO achieved a degradation degree of 64.7%. Furthermore, the BO/WO nanocomposites retained 96% of their initial activity over five consecutive cycles, demonstrating exceptional stability. Advanced characterization techniques, such as high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), and electron paramagnetic resonance (EPR) confirmed the composition and catalytic mechanism of the composite material. The findings indicated that the BO/WO nanocomposites, through their optimized Type-I heterojunction structure, achieved efficient separation and transport of photogenerated electron–hole pairs, significantly enhancing the degree of degradation of organophosphate pesticides. This research not only propels the development of high-performance photocatalytic materials, but also provides innovative strategies and a robust scientific foundation for mitigating global organophosphate pesticide pollution, underscoring its substantial potential for environmental remediation.

Funder

The Project of Science and Technology Innovation Team of Anhui Science and Technology University

National Natural Science Foundation of China

Major Foundation of the Educational Commission of Anhui Province

the Natural Science Research Project for Colleges and Universities in Anhui Province

the Open Project of Key Laboratory of Advanced Electrode Materials for Novel Solar Cells for Petroleum and Chemical Industry of China

the Talent Introduction Foundation of Anhui Science and Technology University

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3