Efficacy of oral lipid-based formulations of apomorphine and its diester in a Parkinson's disease rat model

Author:

Borkar Nrupa1,Andersson Daniel R2,Yang Mingshi13,Müllertz Anette14,Holm René15,Mu Huiling1ORCID

Affiliation:

1. Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark

2. Neurodegeneration In Vivo, Valby, Denmark

3. Department of Pharmaceutics, Shenyang Pharmaceutical University, Shenyang Shi, China

4. Bioneer: FARMA, Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark

5. Pharmaceutical Science and CMC Biologics, Valby, Denmark

Abstract

Abstract Objectives Apomorphine is used to symptomatically treat Parkinson's disease (PD). Oral delivery of apomorphine is generally limited by its short plasma half-life and a hepatic first-pass metabolism. This study was aimed at evaluating the behavioural response of apomorphine and its prodrug administered in oral lipid-based formulations. Methods The behavioural response of apomorphine and its prodrug administered in oral lipid-based formulations was evaluated using a 6-hydroxydopamine-lesioned rat model simulating PD symptomatology. Apomorphine or dipalmitoyl apomorphine (DPA) was incorporated into different lipid-based formulations and orally administered (0.24 mmol/kg) to the PD rat model. The rotations by the rats were counted. Key findings The duration of response lasted to about 2.5 h with oral apomorphine- and DPA-loaded o/w emulsion, while it was increased to 6 h when DPA was incorporated in self-emulsifying drug delivery systems compared to s.c. apomorphine (1 h). This suggests that the lipid-based formulations provide a sustained drug release allowing for a steady exposure to the brain. Conclusions Oral lipid-based apomorphine delivery has a potential in achieving a steady response, though at a higher dose possibly eliminating the need for frequent s.c. apomorphine administration.

Funder

Lundbeck Foundation

Publisher

Oxford University Press (OUP)

Subject

Pharmaceutical Science,Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3