Underprediction of extirpation and colonisation following climate and land‐use change using species distribution models

Author:

Auffret Alistair G.1ORCID,Nenzén Hedvig12ORCID,Polaina Ester1ORCID

Affiliation:

1. Department of Ecology Swedish University of Agricultural Sciences Uppsala Sweden

2. Swedish Species Information Centre Swedish University of Agricultural Sciences Uppsala Sweden

Abstract

AbstractAimTo evaluate the performance of species distribution models in predicting observed colonisations, persistences and extirpations in response to changes in climate and land use over a multi‐decadal period.LocationSweden.MethodsWe use historical (early 20th century) land use and climate data to build species distribution models for 84 plant species across three provinces of Sweden. Model performance was then evaluated internally using a subset of the historical data for cross‐validation, as well as by using the models to project occurrences to the modern day and validating them with observed occurrences from 1990 to 2020. We then analysed predicted and observed occurrences in the modern period in terms of persistence, extirpation (local extinction) and colonisation in relation to species' habitat and climate associations.ResultsWe found overall high agreement between evaluation methods, although internal evaluation gave consistently higher values for model performance (using true skill statistic, TSS). Overall, extirpations were worst predicted, with on average fewer than one‐third of each species' extirpations being foreseen by the models. Colonisations were better predicted, while persistences were relatively well‐predicted. Predictive accuracy of colonisations was higher for species with relatively warmer temperature associations (climate‐driven expansion), while extirpations were better predicted in cool‐related species (retractions at cool edges). Colonisations of forest‐associated species were more common than predicted (underpredicted), despite widespread patterns of afforestation. Assessing grid‐cell level turnover, we found that in grid cells that experienced the largest changes in terms of climate and land use, predicted extirpations were less likely to have happened.Main ConclusionsWe found that commonly applied modelling approaches have limited ability to predict observed changes in species occurrences, especially extirpations. This suggests that we should take predictions of future biodiversity loss very seriously. However, the ability for species to (at least temporarily) persist in unsuitable conditions could be an opportunity for biodiversity conservation.

Funder

Vetenskapsrådet

Svenska Forskningsrådet Formas

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3