Efficient building facade structure extraction method using image‐based laser point cloud

Author:

Wang Yongzhi12ORCID,Hu Xiaoyu12,Zhou Tao2,Ma Yuqing3,Li Zhenchao2

Affiliation:

1. School of Geography Science and Geomatics Engineering Suzhou University of Science and Technology Suzhou China

2. School of Architectural and Surveying & Mapping Engineering Jiangxi University of Science and Technology Ganzhou China

3. College of Sciences Shihezi University Shihezi China

Abstract

AbstractFacade structures from three‐dimensional (3D) point cloud data (PCD) and two‐dimensional (2D) optical images can provide significant information for 3D building modeling. However, a unified data model for integrating 2D imagery pixels and 3D PCD is absent in current methods, leading to a complex implementation process, large calculations, and inefficiency. An efficient facade structure extraction method for building facades is proposed in this study. Based on the conversion matrix, 2D image and 3D PCD information are merged to build an image‐based laser point cloud (ILPC) data model first. Second, both the line segment detection and random sample consensus algorithms are improved according to the structure and characteristics of the ILPC data model. Finally, building facade structures are extracted and optimized. Facade structures can be extracted accurately and efficiently by the proposed method, which contains rich information support from the ILPC data model. The proposed method extracts fine building facade structures with accuracy over 0.68 in all experiments and recall up to 0.81, which are better than the Wang method. Extracted structures constitute valuable support for numerous fields, such as 3D building modeling and building information modeling construction.

Publisher

Wiley

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3