Affiliation:
1. School of Geography Science and Geomatics Engineering Suzhou University of Science and Technology Suzhou China
2. School of Architectural and Surveying & Mapping Engineering Jiangxi University of Science and Technology Ganzhou China
3. College of Sciences Shihezi University Shihezi China
Abstract
AbstractFacade structures from three‐dimensional (3D) point cloud data (PCD) and two‐dimensional (2D) optical images can provide significant information for 3D building modeling. However, a unified data model for integrating 2D imagery pixels and 3D PCD is absent in current methods, leading to a complex implementation process, large calculations, and inefficiency. An efficient facade structure extraction method for building facades is proposed in this study. Based on the conversion matrix, 2D image and 3D PCD information are merged to build an image‐based laser point cloud (ILPC) data model first. Second, both the line segment detection and random sample consensus algorithms are improved according to the structure and characteristics of the ILPC data model. Finally, building facade structures are extracted and optimized. Facade structures can be extracted accurately and efficiently by the proposed method, which contains rich information support from the ILPC data model. The proposed method extracts fine building facade structures with accuracy over 0.68 in all experiments and recall up to 0.81, which are better than the Wang method. Extracted structures constitute valuable support for numerous fields, such as 3D building modeling and building information modeling construction.
Subject
General Earth and Planetary Sciences
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献