Critical Points Extraction from Building Façades by Analyzing Gradient Structure Tensor

Author:

Chen DongORCID,Li Jing,Di Shaoning,Peethambaran JijuORCID,Xiang Guiqiu,Wan Lincheng,Li Xianghong

Abstract

This paper proposes a building façade contouring method from LiDAR (Light Detection and Ranging) scans and photogrammetric point clouds. To this end, we calculate the confidence property at multiple scales for an individual point cloud to measure the point cloud’s quality. The confidence property is utilized in the definition of the gradient for each point. We encode the individual point gradient structure tensor, whose eigenvalues reflect the gradient variations in the local neighborhood areas. The critical point clouds representing the building façade and rooftop (if, of course, such rooftops exist) contours are then extracted by jointly analyzing dual-thresholds of the gradient and gradient structure tensor. Based on the requirements of compact representation, the initial obtained critical points are finally downsampled, thereby achieving a tradeoff between the accurate geometry and abstract representation at a reasonable level. Various experiments using representative buildings in Semantic3D benchmark and other ubiquitous point clouds from ALS DublinCity and Dutch AHN3 datasets, MLS TerraMobilita/iQmulus 3D urban analysis benchmark, UAV-based photogrammetric dataset, and GeoSLAM ZEB-HORIZON scans have shown that the proposed method generates building contours that are accurate, lightweight, and robust to ubiquitous point clouds. Two comparison experiments also prove the superiority of the proposed method in terms of topological correctness, geometric accuracy, and representation compactness.

Funder

Natural Science Foundation of Jiangsu Province

National Natural Science Foundation of China

Qinglan Project of Jiangsu Province of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference46 articles.

1. Edge and Curve Detection for Visual Scene Analysis

2. Edge-Semantic Learning Strategy for Layout Estimation in Indoor Environment

3. From Pixels to Percepts: Highly Robust Edge Perception and Contour Following Using Deep Learning and an Optical Biomimetic Tactile Sensor

4. Image edge detection using ant colony optimization;Baterina;Wseas Trans. Signal Process.,2010

5. Edge detection: A collection of pixel based approach for colored images;Sadiq;Int. J. Comput. Appl.,2015

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3