Scalable preparation of osteogenic micro‐tissues derived fromhESC‐derived immunity‐and‐matrix‐regulatory cells within porous microcarriers in suspension culture

Author:

Ma Huike1,Gao Tingting2,Wang Liu234,Mohsin Ali1,Hao Jie234ORCID,Guo Meijin1ORCID,Wu Jun23

Affiliation:

1. State Key Laboratory of Bioreactor Engineering East China University of Science and Technology Shanghai China

2. State Key Laboratory of Stem Cell and Reproductive Biology, National Stem Cell Resource Center Chinese Academy of Sciences Beijing China

3. Institute for Stem Cell and Regeneration Chinese Academy of Sciences Beijing China

4. State Key Laboratory of Stem Cell and Reproductive Biology Institute of Zoology, Chinese Academy of Sciences Beijing China

Abstract

AbstractBone defects (BDs), a prevalent clinically refractory orthopaedic disease, presently have no effective treatments. Mesenchymal stem cells (MSCs) can differentiate into osteoblasts and serve as potential seed cells for bone tissue engineering for BD treatment. However, the feasibility of using MSCs as seed cells for bone tissue engineering remains unclear. As a result, the critical issue of large‐scale cell‐scaffold preparation remains unresolved. In this study, we demonstrated for the first time that human embryonic stem cell‐derived MSCs, also known as immunity‐and‐matrix‐regulatory cells (IMRCs), could be inoculated into microcarriers to create osteogenic micro‐tissues appropriate for scalable production in 250 mL bioreactor. IMRCs were generally smaller than umbilical cord‐derived MSCs (UCMSCs) and could attach, migrate, proliferate and differentiate within the porous microcarriers, whereas UCMSCs could only attach to the surface of microcarriers. Osteogenic micro‐tissues generated from IMRCs‐seeded microcarriers significantly increased osteocalcin levels after 21 days of differentiation in a bioreactor. Furthermore, the expression levels of osteogenic biomarker genes/proteins such as alkaline phosphatase (ALP), osteocalcin (OCN), runt‐related transcription factor 2 (RUNX2), osteopontin (OPN) and osterix (OSX) were significantly higher than osteogenic micro‐tissues derived from UCMSCs‐seeded microcarriers. Our findings imply that IMRCs could potentially serve as seed cells for the scalable production of osteogenic micro‐tissues for BD treatment.

Publisher

Wiley

Subject

Cell Biology,General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3