Metabolomics and transcriptomics analysis revealed the response mechanism of alfalfa to combined cold and saline‐alkali stress

Author:

Liu Lei1,Si Liang1,Zhang Lishuang1,Guo Rui1,Wang Ruixin1,Dong Haimei1,Guo Changhong1ORCID

Affiliation:

1. Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology Harbin Normal University No. 1 Shida Road, Limin Development Zone Harbin Heilongjiang 150025 People's Republic of China

Abstract

SUMMARYCold and saline‐alkali stress are frequently encountered by plants, and they often occur simultaneously in saline‐alkali soils at mid to high latitudes, constraining forage crop distribution and production. However, the mechanisms by which forage crops respond to the combination of cold and saline‐alkali stress remain unknown. Alfalfa (Medicago sativa L.) is one of the most essential forage grasses in the world. In this study, we analyzed the complex response mechanisms of two alfalfa species (Zhaodong [ZD] and Blue Moon [BM]) to combined cold and saline‐alkali stress using multi‐omics. The results revealed that ZD had a greater ability to tolerate combined stress than BM. The tricarboxylic acid cycles of the two varieties responded positively to the combined stress, with ZD accumulating more sugars, amino acids, and jasmonic acid. The gene expression and flavonoid content of the flavonoid biosynthesis pathway were significantly different between the two varieties. Weighted gene co‐expression network analysis and co‐expression network analysis based on RNA‐Seq data suggested that the MsMYB12 gene may respond to combined stress by regulating the flavonoid biosynthesis pathway. MsMYB12 can directly bind to the promoter of MsFLS13 and promote its expression. Moreover, MsFLS13 overexpression can enhance flavonol accumulation and antioxidant capacity, which can improve combined stress tolerance. These findings provide new insights into improving alfalfa resistance to combined cold and saline‐alkali stress, showing that flavonoids are essential for plant resistance to combined stresses, and provide theoretical guidance for future breeding programs.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3