Machine learning for non‐invasive sensing of hypoglycaemia while driving in people with diabetes

Author:

Lehmann Vera1,Zueger Thomas12,Maritsch Martin2ORCID,Kraus Mathias23,Albrecht Caroline1,Bérubé Caterina2,Feuerriegel Stefan4,Wortmann Felix5,Kowatsch Tobias267,Styger Naïma1,Lagger Sophie1,Laimer Markus1,Fleisch Elgar25,Stettler Christoph1ORCID

Affiliation:

1. Department of Diabetes, Endocrinology, Nutritional Medicine and Metabolism Inselspital, Bern University Hospital, University of Bern Bern Switzerland

2. Department of Management, Technology, and Economics ETH Zurich Zurich Switzerland

3. School of Business, Economics and Society Friedrich‐Alexander University Erlangen‐Nürnberg Nürnberg Germany

4. Institute of AI in Management LMU Munich Munich Germany

5. Institute of Technology Management University of St. Gallen St. Gallen Switzerland

6. Institute for Implementation Science in Health Care University of Zurich Zurich Switzerland

7. School of Medicine University of St. Gallen St. Gallen Switzerland

Abstract

AbstractAimTo develop and evaluate the concept of a non‐invasive machine learning (ML) approach for detecting hypoglycaemia based exclusively on combined driving (CAN) and eye tracking (ET) data.Materials and MethodsWe first developed and tested our ML approach in pronounced hypoglycaemia, and then we applied it to mild hypoglycaemia to evaluate its early warning potential. For this, we conducted two consecutive, interventional studies in individuals with type 1 diabetes. In study 1 (n = 18), we collected CAN and ET data in a driving simulator during euglycaemia and pronounced hypoglycaemia (blood glucose [BG] 2.0‐2.5 mmol L−1). In study 2 (n = 9), we collected CAN and ET data in the same simulator but in euglycaemia and mild hypoglycaemia (BG 3.0‐3.5 mmol L−1).ResultsHere, we show that our ML approach detects pronounced and mild hypoglycaemia with high accuracy (area under the receiver operating characteristics curve 0.88 ± 0.10 and 0.83 ± 0.11, respectively).ConclusionsOur findings suggest that an ML approach based on CAN and ET data, exclusively, enables detection of hypoglycaemia while driving. This provides a promising concept for alternative and non‐invasive detection of hypoglycaemia.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Publisher

Wiley

Subject

Endocrinology,Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3