Multimodal In-Vehicle Hypoglycemia Warning for Drivers With Type 1 Diabetes: Design and Evaluation in Simulated and Real-World Driving

Author:

Bérubé CaterinaORCID,Maritsch MartinORCID,Lehmann Vera FranziskaORCID,Kraus MathiasORCID,Feuerriegel StefanORCID,Züger ThomasORCID,Wortmann FelixORCID,Stettler ChristophORCID,Fleisch ElgarORCID,Kocaballi A BakiORCID,Kowatsch TobiasORCID

Abstract

Background Hypoglycemia threatens cognitive function and driving safety. Previous research investigated in-vehicle voice assistants as hypoglycemia warnings. However, they could startle drivers. To address this, we combine voice warnings with ambient LEDs. Objective The study assesses the effect of in-vehicle multimodal warning on emotional reaction and technology acceptance among drivers with type 1 diabetes. Methods Two studies were conducted, one in simulated driving and the other in real-world driving. A quasi-experimental design included 2 independent variables (blood glucose phase and warning modality) and 1 main dependent variable (emotional reaction). Blood glucose was manipulated via intravenous catheters, and warning modality was manipulated by combining a tablet voice warning app and LEDs. Emotional reaction was measured physiologically via skin conductance response and subjectively with the Affective Slider and tested with a mixed-effect linear model. Secondary outcomes included self-reported technology acceptance. Participants were recruited from Bern University Hospital, Switzerland. Results The simulated and real-world driving studies involved 9 and 10 participants with type 1 diabetes, respectively. Both studies showed significant results in self-reported emotional reactions (P<.001). In simulated driving, neither warning modality nor blood glucose phase significantly affected self-reported arousal, but in real-world driving, both did (F2,68=4.3; P<.05 and F2,76=4.1; P=.03). Warning modality affected self-reported valence in simulated driving (F2,68=3.9; P<.05), while blood glucose phase affected it in real-world driving (F2,76=9.3; P<.001). Skin conductance response did not yield significant results neither in the simulated driving study (modality: F2,68=2.46; P=.09, blood glucose phase: F2,68=0.3; P=.74), nor in the real-world driving study (modality: F2,76=0.8; P=.47, blood glucose phase: F2,76=0.7; P=.5). In both simulated and real-world driving studies, the voice+LED warning modality was the most effective (simulated: mean 3.38, SD 1.06 and real-world: mean 3.5, SD 0.71) and urgent (simulated: mean 3.12, SD 0.64 and real-world: mean 3.6, SD 0.52). Annoyance varied across settings. The standard warning modality was the least effective (simulated: mean 2.25, SD 1.16 and real-world: mean 3.3, SD 1.06) and urgent (simulated: mean 1.88, SD 1.55 and real-world: mean 2.6, SD 1.26) and the most annoying (simulated: mean 2.25, SD 1.16 and real-world: mean 1.7, SD 0.95). In terms of preference, the voice warning modality outperformed the standard warning modality. In simulated driving, the voice+LED warning modality (mean rank 1.5, SD rank 0.82) was preferred over the voice (mean rank 2.2, SD rank 0.6) and standard (mean rank 2.4, SD rank 0.81) warning modalities, while in real-world driving, the voice+LED and voice warning modalities were equally preferred (mean rank 1.8, SD rank 0.79) to the standard warning modality (mean rank 2.4, SD rank 0.84). Conclusions Despite the mixed results, this paper highlights the potential of implementing voice assistant–based health warnings in cars and advocates for multimodal alerts to enhance hypoglycemia management while driving. Trial Registration ClinicalTrials.gov NCT05183191; https://classic.clinicaltrials.gov/ct2/show/NCT05183191, ClinicalTrials.gov NCT05308095; https://classic.clinicaltrials.gov/ct2/show/NCT05308095

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3