Stability analysis of explicit MPM

Author:

Bai Song1,Schroeder Craig1ORCID

Affiliation:

1. University of California Riverside

Abstract

AbstractIn this paper we analyze the stability of the explicit material point method (MPM). We focus on PIC, APIC, and CPIC transfers using quadratic and cubic splines in two and three dimensions. We perform a fully three‐dimensional Von Neumann stability analysis to study the behavior within the bulk of a material. This reveals the relationship between the sound speed, CFL number, and actual time step restriction and its dependence on discretization options. We note that boundaries are generally less stable than the interior, with stable time steps generally decreasing until the limit when particles become isolated. We then analyze the stability of a single particle to derive a novel time step restriction that stabilizes simulations at their boundaries. Finally, we show that for explicit MPM with APIC or CPIC transfers, there are pathological cases where growth is observed at arbitrarily small time steps sizes. While these cases do not necessarily pose a problem for practical usage, they do suggest that a guarantee of stability may be theoretically impossible and that necessary but not sufficient time step restrictions may be a necessary and practical compromise.

Funder

National Science Foundation

Publisher

Wiley

Subject

Computer Graphics and Computer-Aided Design

Reference52 articles.

1. The generalized interpolation material point method;Bardenhagen S.;Comp Mod in Eng and Sci,2004

2. Flip: A low-dissipation, particle-in-cell method for fluid flow

3. BrackbillJ. LapentaG.: Particle‐in‐cell magnetohydrodynamics. In16th Int Conf on the Numer Sim of Plasmas(1998). 2

4. FLIP: A method for adaptively zoned, particle-in-cell calculations of fluid flows in two dimensions

5. The ringing instability in particle-in-cell calculations of low-speed flow

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3