Transcriptome analysis of the Mizuhopecten yessoensis gills under high temperature fluctuations

Author:

Li Danyang1ORCID,Liu Yang1,Tian Ying1,Mao Junxia1,Wang Xubo1,Chang Yaqing1ORCID,Hao Zhenlin1

Affiliation:

1. Key Laboratory of Mariculture and Stock Enhancement in North China's Sea, Ministry of Agriculture Dalian Ocean University Dalian China

Abstract

AbstractTemperature is one of the environmental factors affecting the physiological activities of aquatic animals. This study explored the gene expression and regulation mechanism in the gill tissues of the scallop Mizuhopecten yessoensis under the stress of high temperature fluctuations. We designed a high temperature fluctuation experiment, in which the water temperature was raised from 20°C to 23°C and 26°C and then decreased from 26°C to 23°C and 20°C, with a rate of heating and cooling of 0.5°C/h. The experiment consisted of four cycles and lasted for 7.5 days. When the target temperature was reached and the next temperature increase or decrease began, the gills of scallops were collected to measure immune enzyme activities and for transcriptome analysis. Immunological results showed significant differences in enzyme activities of catalase, superoxide dismutase, total antioxidant capacity, and lysozyme in scallop gills at 20°C on the first day and 26°C on the fifth day. Therefore, we analyzed gene expression from gill samples from these two time points using transcriptomics. We referred to samples from these time points as the normal temperature group (NT) and high temperature group (HT). Transcriptome results indicated that 347 differentially expressed genes (DEGs) were found in HT versus NT. Through gene ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, we found that these DEGs were mainly involved in metabolic pathways and protein synthesis pathways and had significant effects on oxidative stress, apoptosis, body metabolism, and protein folding in M. yessoensis. We selected 62 DEGs related to heat shock, immunity, and metabolism, including 47 upregulated and 15 downregulated DEGs. In a subset of these genes, quantitative real‐time PCR (qRT‐PCR) analysis showed similar expression (R2 = 0.81), thus validating the transcriptome data. Our results provide a theoretical basis for further analysis of the response mechanism in M. yessoensis to high temperature stress and for the development of molecular breeding technology for high temperature tolerance.

Funder

Scientific Research Fund of Liaoning Provincial Education Department

Publisher

Wiley

Subject

Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3