Frozen mountain pine needles: The endodermis discriminates between the ice‐containing central tissue and the ice‐free fully functional mesophyll

Author:

Stegner Matthias1ORCID,Buchner Othmar1,Geßlbauer Michael1,Lindner Jasmin1,Flörl Alexander1,Xiao Nannan2,Holzinger Andreas1,Gierlinger Notburga2,Neuner Gilbert1

Affiliation:

1. Department of Botany University of Innsbruck Innsbruck Austria

2. Institute of Biophysics, University of Natural Resources and Life Sciences (BOKU) Vienna Austria

Abstract

AbstractConifer (Pinaceae) needles are the most frost‐hardy leaves. During needle freezing, the exceptional leaf anatomy, where an endodermis separates the mesophyll from the vascular tissue, could have consequences for ice management and photosynthesis. The eco‐physiological importance of needle freezing behaviour was evaluated based on the measured natural freezing strain at the alpine treeline. Ice localisation and cellular responses to ice were investigated in mountain pine needles by cryo‐microscopic techniques. Their consequences for photosynthetic activity were assessed by gas exchange measurements. The freezing response was related to the microchemistry of cell walls investigated by Raman microscopy. In frozen needles, ice was confined to the central vascular cylinder bordered by the endodermis. The endodermal cell walls were lignified. In the ice‐free mesophyll, cells showed no freeze‐dehydration and were found photosynthetically active. Mesophyll cells had lignified tangential cell walls, which adds rigidity. Ice barriers in mountain pine needles seem to be realised by a specific lignification patterning of cell walls. This, additionally, impedes freeze‐dehydration of mesophyll cells and enables gas exchange of frozen needles. At the treeline, where freezing is a dominant environmental factor, the elaborate needle freezing pattern appears of ecological importance.

Funder

Austrian Science Fund

Publisher

Wiley

Subject

Cell Biology,Plant Science,Genetics,General Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3