Affiliation:
1. The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences Shandong University Qingdao 266237 China
2. National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops Henan Agricultural University Zhengzhou 450002 China
Abstract
Summary
Ribosome biogenesis is a highly dynamic and orchestrated process facilitated by hundreds of ribosomal biogenesis factors and small nucleolar RNAs. While many of the advances are derived from studies in yeast, ribosome biogenesis remains largely unknown in plants despite its importance to plant growth and development.
Through characterizing the maize (Zea mays) defective kernel and embryo‐lethal mutant dek58, we show that DEK58 encodes an Rrp15p domain‐containing protein with 15.3% identity to yeast Rrp15. Over‐expression of DEK58 rescues the mutant phenotype.
DEK58 is localized in the nucleolus. Ribosome profiling and RNA gel blot analyses show that the absence of DEK58 reduces ribosome assembly and impedes pre‐rRNA processing, accompanied by the accumulation of nearly all the pre‐rRNA processing intermediates and the production of an aberrant processing product P‐25S*. DEK58 interacts with ZmSSF1, a maize homolog of the yeast Ssf1 in the 60S processome. DEK58 and ZmSSF1 interact with ZmCK2α, a putative component of the yeast UTP‐C complex involved in the small ribosomal subunit processome.
These results demonstrate that DEK58 is essential to seed development in maize. It functions in the early stage of pre‐rRNA processing in ribosome biogenesis, possibly through interacting with ZmSSF1 and ZmCK2α in maize.
Funder
National Natural Science Foundation of China
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献