Dynamic Transcriptome Landscape of Maize Embryo and Endosperm Development

Author:

Chen Jian1,Zeng Biao1,Zhang Mei1,Xie Shaojun1,Wang Gaokui1,Hauck Andrew1,Lai Jinsheng1

Affiliation:

1. State Key Laboratory of Agro-biotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, People’s Republic of China

Abstract

Abstract Maize (Zea mays) is an excellent cereal model for research on seed development because of its relatively large size for both embryo and endosperm. Despite the importance of seed in agriculture, the genome-wide transcriptome pattern throughout seed development has not been well characterized. Using high-throughput RNA sequencing, we developed a spatiotemporal transcriptome atlas of B73 maize seed development based on 53 samples from fertilization to maturity for embryo, endosperm, and whole seed tissues. A total of 26,105 genes were found to be involved in programming seed development, including 1,614 transcription factors. Global comparisons of gene expression highlighted the fundamental transcriptomic reprogramming and the phases of development. Coexpression analysis provided further insight into the dynamic reprogramming of the transcriptome by revealing functional transitions during maturation. Combined with the published nonseed high-throughput RNA sequencing data, we identified 91 transcription factors and 1,167 other seed-specific genes, which should help elucidate key mechanisms and regulatory networks that underlie seed development. In addition, correlation of gene expression with the pattern of DNA methylation revealed that hypomethylation of the gene body region should be an important factor for the expressional activation of seed-specific genes, especially for extremely highly expressed genes such as zeins. This study provides a valuable resource for understanding the genetic control of seed development of monocotyledon plants.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3