Secondary phase softening effect in PZT‐based ceramics by introducing the random electric fields

Author:

Guo Feifei1ORCID,Zhou Qi2,Chen Yifei1,Yang Chao3,Bai Wenqiang1,Zhou Hongqiao1,Qiu Ruigang1,Long Wei1,Fang Pinyang1ORCID,Xi Zengzhe1

Affiliation:

1. Shaanxi Key Laboratory of Photoelectric Functional Materials and Devices, School of Materials and Chemical Engineering Xi'an Technological University Xi'an Shaanxi China

2. School of Electronic Information and Electrical Engineering Shanghai Jiao Tong University Shanghai China

3. School of Physics and Electronic Engineering Harbin Normal University Harbin Heilongjiang China

Abstract

AbstractIn this work, the random electric fields are constructed in the hard PZT ceramics by adding the ZnO particles as a secondary phase to tune the piezoelectric properties and losses. It is found that the internal bias electric field existing in the hard PZT ceramics has been tuned successfully by the random electric fields and its value reduces with the increased ZnO content. As a consequence, the piezoelectric constant d33 reaches up to 483 pC/N in the PZT/0.75 wt%ZnO composite, which is much higher than that of the hard PZT matrix. In the meantime, the electromechanical quality factor Qm, dielectric loss tan δ, and Curie temperature TC for this composite are about 1109, 0.55%, and 279°C, respectively. The promoted d33 is attributed to the small domain size and reduced internal bias electric field, whereas the low losses (large Qm and low tan δ) can be put down to the still existing nonzero internal bias electric field.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shaanxi Province

Natural Science Foundation of Shaanxi Provincial Department of Education

Publisher

Wiley

Subject

Materials Chemistry,Ceramics and Composites

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3