Affiliation:
1. Shaanxi Key Laboratory of Photoelectric Functional Materials and Devices, School of Materials and Chemical Engineering Xi'an Technological University Xi'an Shaanxi China
2. School of Electronic Information and Electrical Engineering Shanghai Jiao Tong University Shanghai China
3. School of Physics and Electronic Engineering Harbin Normal University Harbin Heilongjiang China
Abstract
AbstractIn this work, the random electric fields are constructed in the hard PZT ceramics by adding the ZnO particles as a secondary phase to tune the piezoelectric properties and losses. It is found that the internal bias electric field existing in the hard PZT ceramics has been tuned successfully by the random electric fields and its value reduces with the increased ZnO content. As a consequence, the piezoelectric constant d33 reaches up to 483 pC/N in the PZT/0.75 wt%ZnO composite, which is much higher than that of the hard PZT matrix. In the meantime, the electromechanical quality factor Qm, dielectric loss tan δ, and Curie temperature TC for this composite are about 1109, 0.55%, and 279°C, respectively. The promoted d33 is attributed to the small domain size and reduced internal bias electric field, whereas the low losses (large Qm and low tan δ) can be put down to the still existing nonzero internal bias electric field.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Shaanxi Province
Natural Science Foundation of Shaanxi Provincial Department of Education
Subject
Materials Chemistry,Ceramics and Composites
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献