Biomass yield potential on U.S. marginal land and its contribution to reach net‐zero emission

Author:

He Yufeng12ORCID,Jaiswal Deepak234ORCID,Long Stephen P.256ORCID,Liang Xin‐Zhong78ORCID,Matthews Megan L.12ORCID

Affiliation:

1. Department of Civil and Environmental Engineering University of Illinois Urbana‐Champaign Champaign Illinois USA

2. Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana‐Champaign Champaign Illinois USA

3. Environmental Sciences and Sustainable Engineering Center Indian Institute of Technology Palakkad Kanjikode Kerala India

4. Department of Civil Engineering Indian Institute of Technology Palakkad Kanjikode Kerala India

5. Plant Biology Department University of Illinois Urbana–Champaign Champaign Illinois USA

6. Crop Sciences Department University of Illinois Urbana–Champaign Champaign Illinois USA

7. Earth System Science Interdisciplinary Center University of Maryland College Park Maryland USA

8. Department of Atmospheric and Oceanic Science University of Maryland College Park Maryland USA

Abstract

AbstractBioenergy with carbon capture and geological storage (BECCS) is considered one of the top options for both offsetting CO2 emissions and removing atmospheric CO2. BECCS requires using limited land resources efficiently while ensuring minimal adverse impacts on the delicate food‐energy‐water nexus. Perennial C4 biomass crops are productive on marginal land under low‐input conditions avoiding conflict with food and feed crops. The eastern half of the contiguous U.S. contains a large amount of marginal land, which is not economically viable for food production and liable to wind and water erosion under annual cultivation. However, this land is suitable for geological CO2 storage and perennial crop growth. Given the climate variation across the region, three perennials are major contenders for planting. The yield potential and stability of Miscanthus, switchgrass, and energycane across the region were compared to select which would perform best under the recent (2000–2014) and future (2036–2050) climates. Miscanthus performed best in the Midwest, switchgrass in the Northeast and energycane in the Southeast. On average, Miscanthus yield decreased from present 19.1 t/ha to future 16.8 t/ha; switchgrass yield from 3.5 to 2.4 t/ha; and energycane yield increased from 14 to 15 t/ha. Future yield stability decreased in the region with higher predicted drought stress. Combined, these crops could produce 0.6–0.62 billion tonnes biomass per year for the present and future. Using the biomass for power generation with CCS would capture 703–726 million tonnes of atmospheric CO2 per year, which would offset about 11% of current total U.S. emission. Further, this biomass approximates the net primary CO2 productivity of two times the current baseline productivity of existing vegetation, suggesting a huge potential for BECCS. Beyond BECCS, C4 perennial grasses could also increase soil carbon and provide biomass for emerging industries developing replacements for non‐renewable products including plastics and building materials.

Funder

National Institute of Food and Agriculture

National Science Foundation

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3