High‐resolution strain mapping in a thermionic LaB6 scanning electron microscope

Author:

Poole Benjamin1ORCID,Marsh Alex1,Lunt David12,Hardie Chris1,Gorley Mike1,Hamelin Cory1,Harte Allan1

Affiliation:

1. United Kingdom Atomic Energy Authority, Culham Centre for Fusion Energy, Culham Science Centre Abingdon Oxon UK

2. Department of Materials The University of Manchester Manchester UK

Abstract

AbstractThe high source stability and brightness of field emission gun equipped scanning electron microscopes (SEM) makes them ideal for high‐resolution digital image correlation (HRDIC). However, their high initial capital cost can be prohibitive for research organisations and groups. Conventional thermionic SEMs using either a tungsten hairpin or LaB6 filament are far more widespread due to their lower cost. Whilst it is understood that overall performance and ultimate resolution are lower than field emission SEMs, we propose that there is no fundamental reason why these instruments are unsuitable for HRDIC. We investigate the use of a LaB6 SEM as a viable tool for HRDIC. We detail the subtleties of performing HRDIC using a LaB6 thermionic source SEM, providing technical recommendations for best practices in using these instruments for strain mapping. The effects of instrument parameters on strain measurement noise are examined, with a focus on parameters of key relevance to in situ and ex situ mechanical testing. Errors in focus and image pixel size are found to be the primary contributors to the strain noise floor values, with stage accuracy being of secondary importance. We present a case study in oxygen‐free high‐conductivity copper, OFHC‐Cu, which is used in the designs of nuclear fusion components as a heat sink interlayer. Heterogeneous strain patterns are observed in this material, with high levels of strain localisation at grain boundaries. Active slip systems are identified using the relative displacement ratio method, demonstrating the quality of these data and the suitability of LaB6 instruments for HRDIC strain mapping, achieving performance approaching that expected of a field emission SEM.

Funder

Science and Technology Policy Institute

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3