Soil legacies of tree species richness in a young plantation do not modulate tree seedling response to watering regime

Author:

Dhiedt E.12ORCID,Baeten L.1ORCID,De Smedt P.1ORCID,Verheyen K.1ORCID

Affiliation:

1. Forest & Nature Lab, Department of Environment, Faculty of Bioscience Engineering Ghent University Melle‐Gontrode Belgium

2. UKCEH (UK Centre for Ecology & Hydrology), Environment Centre Wales Bangor UK

Abstract

Abstract Trees have a strong and species‐specific influence on biotic and abiotic properties of the soil. Even after the vegetation is removed, the effect can persist to form so‐called soil legacies. We investigated the effects of soil legacies of tree species richness on the emergence and growth of tree seedlings, and how these legacy effects modulate the seedling responses to irrigation frequency. We used a 9‐year‐old tree plantation on former agricultural land in Belgium, which is part of a biodiversity‐ecosystem functioning experiment (FORBIO). Soil originating from monocultures and four‐species plots, with different species combinations, was translocated to a greenhouse. Five tree species (Betula pendula, Fagus sylvatica, Pinus sylvestris, Quercus robur, and Tilia cordata) were sown and grown for one growing season in these soils. We performed a watering treatment (low and high irrigation frequency) to measure any potential interaction effects between the soil legacies and irrigation frequency. There was no evidence for soil legacy effects of species richness on plant performance or their response to the irrigation frequency. However, the effect of irrigation frequency was dependent on species identity of the tree seedlings. Despite the lack of clear legacy effects, performance measures did show correlated responses that are likely due to species composition effects. We ascribe these patterns to the young age of the forest and the agricultural past land use. At this early stage in forest development, the land‐use history likely has a more important role in shaping soil characteristics that affect plant growth and their response to drought, than species diversity.

Funder

Fonds Wetenschappelijk Onderzoek

Publisher

Wiley

Subject

Plant Science,Ecology, Evolution, Behavior and Systematics,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3