Liposomal black mulberry extract loaded‐nanofibers: preparation, characterisation, and bioaccessibility of phenolics by simulated in vitro digestion combined with the Caco‐2 cell model

Author:

Kalintas Caglar Nagihan12,Saroglu Oznur1,Karakas Canan Yagmur1,Tasci Cansu Ozel3,Catalkaya Gizem4,Yildirim Rusen Metin1,Gultepe Eyup Eren5,Gulec Sukru3ORCID,Sagdic Osman1,Capanoglu Esra4ORCID,Karadag Ayse1ORCID

Affiliation:

1. Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering Yildiz Technical University 34210 Istanbul Turkey

2. Department of Gastronomy and Culinary Arts, Faculty of Fine Arts Istanbul Aydin University 34295 Istanbul Turkey

3. Department of Food Engineering, Molecular Nutrition and Cell Physiology Laboratory Izmir Institute of Technology Urla Izmir Turkey

4. Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering Istanbul Technical University 34469 Istanbul Turkey

5. Department of Animal Nutrition and Nutritional Diseases, Faculty of Veterinary Medicine Afyon Kocatepe University Afyonkarahisar Turkey

Abstract

SummaryBlack mulberry extract (BME) is rich in phenolics; however, their health benefits are restricted by their instability and poor absorption in the small intestine. Liposomal BME‐loaded pullulan/pectin nanofibers were developed to enhance the in vitro bioaccessibility of BME. The liposomes with BME (0.8%, w/v), were produced by the thin‐film hydration and ultrasonication method with a size of 76.41 ± 1.23 nm and encapsulated 79.40 ± 0.99%.of the BME. Scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM) images showed that the uniform distribution of liposomes within the defect‐free fiber structure. Liposomal BME loading elevated the mucoadhesiveness of the nanofibers compared to free BME loading. Liposomal BME‐loaded nanofiber demonstrated a nearly two‐fold increase in the bioaccessibility of anthocyanins. The cellular release of all four different anthocyanins by Caco‐2 cells was significantly higher (3.92%–10.50%) in liposomal BME‐loaded nanofiber. Therefore, liposomal nanofibers show great potential as a method for delivering phenolics, specifically anthocyanins.

Funder

Türkiye Bilimsel ve Teknolojik Araştırma Kurumu

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3