A NAC transcription factor MNAC3‐centered regulatory network negatively modulates rice immunity against blast disease

Author:

Wang Hui123ORCID,Bi Yan123ORCID,Yan Yuqing123ORCID,Yuan Xi14ORCID,Gao Yizhou123ORCID,Noman Muhammad123ORCID,Li Dayong123ORCID,Song Fengming123ORCID

Affiliation:

1. National Key Laboratory for Rice Biology and Breeding, Institute of Biotechnology Zhejiang University Hangzhou 310058 China

2. Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Biotechnology Zhejiang University Hangzhou 310058 China

3. Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology Zhejiang University Hangzhou 310058 China

4. College of Chemistry and Life Sciences Zhejiang Normal University Jinhua 321004 China

Abstract

ABSTRACTNAC transcription factors (TFs) are pivotal in plant immunity against diverse pathogens. Here, we report the functional and regulatory network of MNAC3, a novel NAC TF, in rice immunity. MNAC3, a transcriptional activator, negatively modulates rice immunity against blast and bacterial leaf blight diseases and pathogen‐associated molecular pattern (PAMP)‐triggered immune responses. MNAC3 binds to a CACG cis‐element and activates the transcription of immune‐negative target genes OsINO80, OsJAZ10, and OsJAZ11. The negative function of MNAC3 in rice immunity depends on its transcription of downstream genes such as OsINO80 and OsJAZ10. MNAC3 interacts with immunity‐related OsPP2C41 (a protein phosphatase), ONAC066 (a NAC TF), and OsDjA6 (a DnaJ chaperone). ONAC066 and OsPP2C41 attenuate MNAC3 transcriptional activity, while OsDjA6 promotes it. Phosphorylation of MNAC3 at S163 is critical for its negative functions in rice immunity. OsPP2C41, which plays positive roles in rice blast resistance and chitin‐triggered immune responses, dephosphorylates MNAC3, suppressing its transcriptional activity on the target genes OsINO80, OsJAZ10, and OsJAZ11 and promoting the translocation of MNAC3 from nucleus to cytoplasm. These results establish a MNAC3‐centered regulatory network in which OsPP2C41 dephosphorylates MNAC3, attenuating its transcriptional activity on downstream immune‐negative target genes in rice. Together, these findings deepen our understanding of molecular mechanisms in rice immunity and offer a novel strategy for genetic improvement of rice disease resistance.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3