Adaptive laboratory evolution of Clostridium autoethanogenum to metabolize CO2 and H2 enhances growth rates in chemostat and unravels proteome and metabolome alterations

Author:

Heffernan James12ORCID,Garcia Gonzalez R. Axayactl12,Mahamkali Vishnu3,McCubbin Tim4,Daygon Dara4,Liu Lian4,Palfreyman Robin4,Harris Audrey3,Koepke Michael3ORCID,Valgepea Kaspar5,Nielsen Lars Keld1246,Marcellin Esteban124ORCID

Affiliation:

1. Australian Institute of Bioengineering and Nanotechnology The University of Queensland St. Lucia Queensland Australia

2. ARC Centre of Excellence in Synthetic Biology The University of Queensland St. Lucia Queensland Australia

3. LanzaTech Inc. Skokie Illinois USA

4. Queensland Metabolomics and Proteomics Q‐MAP The University of Queensland St. Lucia Queensland Australia

5. ERA Chair in Gas Fermentation Technologies, Institute of Technology University of Tartu Tartu Estonia

6. The Novo Nordisk Foundation Center for Biosustainability Technical University of Denmark Kgs. Lyngby Denmark

Abstract

AbstractGas fermentation of CO2 and H2 is an attractive means to sustainably produce fuels and chemicals. Clostridium autoethanogenum is a model organism for industrial CO to ethanol and presents an opportunity for CO2‐to‐ethanol processes. As we have previously characterized its CO2/H2 chemostat growth, here we use adaptive laboratory evolution (ALE) with the aim of improving growth with CO2/H2. Seven ALE lineages were generated, all with improved specific growth rates. ALE conducted in the presence of 2% CO along with CO2/H2 generated Evolved lineage D, which showed the highest ethanol titres amongst all the ALE lineages during the fermentation of CO2/H2. Chemostat comparison against the parental strain shows no change in acetate or ethanol production, while Evolved D could achieve a higher maximum dilution rate. Multi‐omics analyses at steady state revealed that Evolved D has widespread proteome and intracellular metabolome changes. However, the uptake and production rates and titres remain unaltered until investigating their maximum dilution rate. Yet, we provide numerous insights into CO2/H2 metabolism via these multi‐omics data and link these results to mutations, suggesting novel targets for metabolic engineering in this bacterium.

Funder

Novo Nordisk Fonden

Queensland Government

Australian Research Council

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3