Anaerobic glucose uptake in Pseudomonas putidaKT2440 in a bioelectrochemical system

Author:

Pause Laura1,Weimer Anna2,Wirth Nicolas T.3ORCID,Nguyen Anh Vu1,Lenz Claudius1,Kohlstedt Michael2ORCID,Wittmann Christoph2ORCID,Nikel Pablo I.3ORCID,Lai Bin4ORCID,Krömer Jens O.1ORCID

Affiliation:

1. Systems Biotechnology group Helmholtz Centre for Environmental Research – UFZ Leipzig Germany

2. Institute of Systems Biotechnology Saarland University Saarbrücken Germany

3. Systems Environmental Microbiology Group, The Novo Nordisk Foundation Center for Biosustainability Technical University of Denmark Lyngby Denmark

4. BMBF Junior Research Group Biophotovoltaics Helmholtz Centre for Environmental Research – UFZ Leipzig Germany

Abstract

AbstractProviding an anodic potential in a bio‐electrochemical system to the obligate aerobe Pseudomonas putida enables anaerobic survival and allows the cells to overcome redox imbalances. In this setup, the bacteria could be exploited to produce chemicals via oxidative pathways at high yield. However, the absence of anaerobic growth and low carbon turnover rates remain as obstacles for the application of such an electro‐fermentation technology. Growth and carbon turnover start with carbon uptake into the periplasm and cytosol. P. putida KT2440 has three native transporting systems for glucose, each differing in energy and redox demand. This architecture previously led to the hypothesis that internal redox and energy constraints ultimately limit cytoplasmic carbon utilization in a bio‐electrochemical system. However, it remains largely unclear which uptake route is predominantly used by P. putida under electro‐fermentative conditions. To elucidate this, we created three gene deletion mutants of P. putida KT2440, forcing the cells to exclusively utilize one of the routes. When grown in a bio‐electrochemical system, the pathway mutants were heavily affected in terms of sugar consumption, current output and product formation. Surprisingly, however, we found that about half of the acetate formed in the cytoplasm originated from carbon that was put into the system via the inoculation biomass, while the other half came from the consumption of substrate. The deletion of individual sugar uptake routes did not alter significantly the secreted acetate concentrations among different strains even with different carbon sources. This means that the stoichiometry of the sugar uptake routes is not a limiting factor during electro‐fermentation and that the low rates might be caused by other reasons, for example energy limitations or a yet‐to‐be‐identified oxygen‐dependent regulatory mechanism.

Funder

Deutsche Forschungsgemeinschaft

H2020 European Institute of Innovation and Technology

Natur og Univers, Det Frie Forskningsråd

Novo Nordisk Fonden

Publisher

Wiley

Subject

Applied Microbiology and Biotechnology,Biochemistry,Bioengineering,Biotechnology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3