Biodegradation of poly(ester‐urethane) coatings by Halopseudomonas formosensis

Author:

de Witt Jan1ORCID,Molitor Rebecka2ORCID,Gätgens Jochem1ORCID,Ortmann de Percin Northumberland Claire3ORCID,Kruse Luzie2ORCID,Polen Tino1ORCID,Wynands Benedikt1ORCID,van Goethem Koen4,Thies Stephan2ORCID,Jaeger Karl‐Erich12ORCID,Wierckx Nick1ORCID

Affiliation:

1. Institute of Bio‐ and Geosciences IBG‐1: Biotechnology, Forschungszentrum Jülich Jülich Germany

2. Institute of Molecular Enzyme Technology, Heinrich‐Heine‐University Düsseldorf Forschungszentrum Jülich Jülich Germany

3. Ernst Ruska‐Centre for Microscopy and Spectroscopy with Electrons: ER‐C‐3: Structural Biology Forschungszentrum Jülich Jülich Germany

4. I‐COATS N.V. Antwerp Belgium

Abstract

AbstractImpranil® DLN‐SD is a poly(ester‐urethane) (PEU) that is widely used as coating material for textiles to fine‐tune and improve their properties. Since coatings increase the complexity of such plastic materials, they can pose a hindrance for sustainable end‐of‐life solutions of plastics using enzymes or microorganisms. In this study, we isolated Halopseudomonas formosensis FZJ due to its ability to grow on Impranil DLN‐SD and other PEUs as sole carbon sources. The isolated strain was exceptionally thermotolerant as it could degrade Impranil DLN‐SD at up to 50°C. We identified several putative extracellular hydrolases of which the polyester hydrolase Hfor_PE‐H showed substrate degradation of Impranil DLN‐SD and thus was purified and characterized in detail. Hfor_PE‐H showed moderate temperature stability (Tm = 53.9°C) and exhibited activity towards Impranil DLN‐SD as well as polyethylene terephthalate. Moreover, we revealed the enzymatic release of monomers from Impranil DLN‐SD by Hfor_PE‐H using GC‐ToF‐MS and could decipher the associated metabolic pathways in H. formosensis FZJ. Overall, this study provides detailed insights into the microbial and enzymatic degradation of PEU coatings, thereby deepening our understanding of microbial coating degradation in both contained and natural environments. Moreover, the study highlights the relevance of the genus Halopseudomonas and especially the novel isolate and its enzymes for future bio‐upcycling processes of coated plastic materials.

Publisher

Wiley

Subject

Applied Microbiology and Biotechnology,Biochemistry,Bioengineering,Biotechnology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3