Inaccurate fossil placement does not compromise tip‐dated divergence times

Author:

Mongiardino Koch Nicolás1ORCID,Garwood Russell J.23ORCID,Parry Luke A.4ORCID

Affiliation:

1. Scripps Institution of Oceanography University of California San Diego San Diego CA USA

2. Department of Earth and Environmental Sciences University of Manchester Manchester UK

3. Natural History Museum London UK

4. Department of Earth Sciences University of Oxford Oxford UK

Abstract

AbstractTime‐scaled phylogenies underpin the interrogation of evolutionary processes across deep timescales, as well as attempts to link these to Earth's history. By inferring the placement of fossils and using their ages as temporal constraints, tip dating under the fossilized birth–death (FBD) process provides a coherent prior on divergence times. At the same time, it also links topological and temporal accuracy, as incorrectly placed fossil terminals should misinform divergence times. This could pose serious issues for obtaining accurate node ages, yet the interaction between topological and temporal error has not been thoroughly explored. We simulate phylogenies and associated morphological datasets using methodologies that incorporate evolution under selection, and are benchmarked against empirical datasets. We find that datasets of 300 characters and realistic levels of missing data generally succeed in inferring the correct placement of fossils on a constrained extant backbone topology, and that true node ages are usually contained within Bayesian posterior distributions. While increased fossil sampling improves the accuracy of inferred ages, topological and temporal errors do not seem to be linked: analyses in which fossils resolve less accurately do not exhibit elevated errors in node age estimates. At the same time, inferred divergence times are biased, probably due to a mismatch between the FBD prior and the shape of our simulated trees. While these results are encouraging, suggesting that even fossils with uncertain affinities can provide useful temporal information, they also emphasize that palaeontological information cannot overturn discrepancies between model priors and the true diversification history.

Funder

National Science Foundation

Natural Environment Research Council

Publisher

Wiley

Subject

Paleontology,Ecology, Evolution, Behavior and Systematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3