Paradox lost: wide gape in the Ordovician brachiopod Rafinesquina explains how unattached filter‐feeding strophomenoids thrived on muddy substrates

Author:

Dattilo Benjamin F.12ORCID,Freeman Rebecca L.3,Hartshorn Kyle4,Peterman David5,Morse Aaron1,Meyer David L.6,Dougan Lindsay G.7ORCID,Hagadorn James W.7

Affiliation:

1. Department of Biology Purdue University Ft. Wayne Indiana 46805 USA

2. Indiana Geological and Water Survey Indiana University Bloomington Indiana 47405 USA

3. Department of Earth and Environmental Sciences University of Kentucky Lexington Kentucky 40506 USA

4. Dry Dredgers 11191 Maple St Cincinnati Ohio 45241 USA

5. Department of Mechanical Engineering Pennsylvania State University University Park Pennsylvania 16802‐4400 USA

6. Department of Geosciences University of Cincinnati Cincinnati Ohio 54221 USA

7. Department of Earth Sciences Denver Museum of Nature & Science Denver Colorado 80205 USA

Abstract

AbstractStrophomenoid brachiopods had thin, concavo‐convex shells, were ubiquitous colonizers of Palaeozoic muddy seafloors, and are hypothesized to have filter‐fed in a concave‐upward orientation. This orientation would elevate their line of commissure out of potentially lethal lophophore‐clogging mud. The paradox is that epibiont distributions on strophomenoids support a convex‐upward life position, as do studies of strophomenoid stability and trace fossils formed by strophomenoid sediment‐clearing. A premise of the concave‐upward orientation hypothesis is a narrow gape, which causes narrow, high velocity inhalant currents, leaving strophomenoids vulnerable to sediment entrainment. Herein we investigate the gape angle of Rafinesquina using serial thin sections and peels, silicified specimens, computer modelling, SEM analysis, x‐ray microCT, and 3D printing. Hinge line structure suggests that, conservatively, Rafinesquina could gape 40–45°. Such a gape occurred when diductor muscle contraction could not cause any further rotation, hinge teeth and crenulations were disengaged, and interareas interlocked. In contrast, when closed, hinge teeth were locked in hinge sockets. This wide gape eliminates constraints on feeding orientation. In either convex‐up or concave‐up orientation, Rafinesquina could feed with slow, diffuse inhalant currents incapable of disturbing sediment, and could snap valves shut to forcefully expel enough water to clear sediment from the mantle cavity, explaining previously described moat‐shaped trace fossils associated with shells. Our findings demonstrate that Rafinesquina gaped at an angle approximately equal to the angle between the two interareas when the valves are closed. Our analyses hint that other strophomenoids with similar interarea angles also lived with their shells widely agape.

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3