Preservational modes of some ichthyosaur soft tissues (Reptilia, Ichthyopterygia) from the Jurassic Posidonia Shale of Germany

Author:

De La Garza Randolph G.1ORCID,Sjövall Peter2ORCID,Hauff Rolf3,Lindgren Johan1ORCID

Affiliation:

1. Department of Geology Lund University Sölvegatan 12 223 62 Lund Sweden

2. Materials and Production RISE Research Institutes of Sweden 501 15 Borås Sweden

3. Urweltmuseum Hauff Aichelberger Straße 90 73271 Holzmaden Germany

Abstract

AbstractKonservat‐Lagerstätten, such as the Toarcian (Early Jurassic) Posidonia Shale of southwestern Germany, are renowned for their spectacular fossils. Ichthyosaur skeletons recovered from this formation are frequently associated with soft tissues; however, the preserved material ranges from three‐dimensional, predominantly phosphatized structures to dark films of mainly organic matter. We examined soft‐tissue residues obtained from two ichthyosaur specimens using an integrated ultrastructural and geochemical approach. Our analyses revealed that the superficially‐looking ‘films’ in fact comprise sections of densely aggregated melanosome (pigment) organelles sandwiched between phosphatized layers containing fibrous microstructures. We interpret this distinct layering as representing condensed and incompletely degraded integument from both sides of the animal. When compared against previously documented ichthyosaur fossils, it becomes readily apparent that a range of preservational modes exists between presumed ‘phosphatic’ and ‘carbonized’ soft‐tissue remains. Some specimens show high structural fidelity (e.g. distinct integumentary layering), while others, including the fossils examined in this study, retain few original anatomical details. This diversity of soft‐tissue preservational modes among Posidonia Shale ichthyosaurs offers a unique opportunity to examine different biostratinomic, taphonomic and diagenetic variables that potentially could affect the process of fossilization. It is likely that soft‐tissue preservation in the Posidonia Shale was regulated by a multitude of factors, including decay efficiency and speed of phosphatic mineral nucleation; these in turn were governed by a seafloor with sustained microbial mat activity fuelled by high organic matter input and seasonally fluctuating oxygen levels.

Funder

Vetenskapsrådet

Publisher

Wiley

Subject

Paleontology,Ecology, Evolution, Behavior and Systematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3