Uncovering a phylogenetic signal in plant biopolymer chemistry: a comparison of sporopollenin isolation approaches for use in palynological research

Author:

Jardine Phillip E.1ORCID,Kent Matthew S.2ORCID,Fraser Wesley T.3ORCID,Knorr Klaus‐Holger4ORCID,Lomax Barry H.2ORCID

Affiliation:

1. Palaeobotany Group, Institute of Geology and Palaeontology University of Münster 48149 Münster Germany

2. School of Biosciences University of Nottingham Sutton Bonington Campus Leicestershire LE12 5RD UK

3. Geography, School of Social Sciences Oxford Brookes University Headington Campus Oxford OX3 0BP UK

4. Ecohydrology & Biogeochemistry Group, Institute of Landscape Ecology University of Münster 48149 Münster Germany

Abstract

AbstractSporomorphs (pollen and spores) are a mainstay of research into past vegetation, and increasingly sporomorph chemistry is being used as a palaeoecological tool. To make extant sporomorphs directly comparable to fossil specimens, fresh material is processed to remove labile compounds and isolate the sporopollenin wall. A range of processing approaches are currently in use, but the chemistries produced by these different techniques have not yet been compared across a range of taxa. It is therefore not clear how they compare in terms of efficiently isolating sporopollenin without changing its chemical structure, and what impact they have on relative chemical similarities and differences among taxa (i.e. whether more closely related species will always appear chemically more similar, regardless of how they have been processed). Here, we test this by applying five different processing approaches to sporomorphs from 15 taxa from across the vascular plant phylogeny. We show that each approach has its own idiosyncrasies in terms of impacts on sporomorph chemistry. For the most part a common pattern of among‐taxon chemical variability is uncovered, and a phylogenetic signal within sporopollenin chemistry is supported. Working with spectral derivatives generally increases agreement among the different processing approaches, but decreases the strength of the phylogenetic signal. No one processing approach is ideal, and the choice of which to use is likely to depend on the goal of the study, the type and quantity of material being processed, and the laboratory facilities available for processing.

Funder

Deutsche Forschungsgemeinschaft

Human Frontier Science Program

Natural Environment Research Council

Palaeontological Association

Publisher

Wiley

Subject

Paleontology,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3